
Introduction to Computational BioStatistics with R:
Linux command line II

Erik Spence

SciNet HPC Consortium

11 September 2025

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 1 / 26

Today’s slides

To find today’s slides, go to the ”Introduction to Computational BioStatistics with R” page,
under Lectures, ”Intro to Linux Shell II”.

https://scinet.courses/1391

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 2 / 26

https://scinet.courses/1391

Our commands so far

There are a couple of things to observe about
the commands we’ve seen so far:

The commands are designed to be fast
and easy to use.

The commands do, essentially, only one
specific thing.

The commands are pretty cryptic. Either
you know them or you don’t.

Commands can take arguments. These
are indicated with a ’-something’ flag
(such as ’ls -F’), or some text.

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory

arg mandatory argument
[arg] optional argument

As you may have hoped, the purpose of this class is to teach you enough commands that you
will be able to survive the Unix command line.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 3 / 26

Setting up for today

[ejspence.mycomp] pwd

/c/Users/ejspence

[ejspence.mycomp]

[ejspence.mycomp] mkdir MSC1090

[ejspence.mycomp]

[ejspence.mycomp] cd MSC1090

[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090

[ejspence.mycomp]

[ejspence.mycomp] mkdir assignment0

[ejspence.mycomp]

[ejspence.mycomp] cd assignment0

[ejspence.mycomp]

[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090/assignment0

[ejspence.mycomp]

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory

arg mandatory argument
[arg] optional argument

Here we are creating a directory to hold
your work for this class.

We create a directory, ’assignment0’, to
hold the files we’ll create today.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 4 / 26

Our next command: echo

One of the simplest bash commands is ’echo’.

The ’echo’ command prints out
whatever arguments it is given.

This may seem silly, but combined with
other commands it can be quite useful.

Don’t forget to hit ’Enter’ at the end of each
line.

If you get an error message, it’s likely you’re
running a different shell (csh, tcsh, zsh).
Type ’bash’ to start a bash shell, and try
again.

[ejspence.mycomp]

[ejspence.mycomp] echo Hello

Hello

[ejspence.mycomp]

[ejspence.mycomp] echo Hello, world

Hello, world

[ejspence.mycomp]

[ejspence.mycomp] echo "Hello, adoring fans"

Hello, adoring fans

[ejspence.mycomp]

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 5 / 26

Text editors
It’s time to write our first shell script. What is a script? A script is just a list of commands
which you want the computer to run.

To write our script we need to use a text editor. NOT a word processor (WORD, for example).
Good text editors include:

Visual Studio Code (https://code.visualstudio.com)

Phoenix Code (https://phcode.io)

Sublime (https://www.sublimetext.com)

NetBeans (https://netbeans.apache.org)

one of the command line text editors: nano, emacs, vi, vim, ...

We recommend against Notepad, Notepad++ (Windows) or TextEdit (Macs).

You will need a proper text editor for the rest of the semester.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 6 / 26

https://code.visualstudio.com
https://phcode.io
https://www.sublimetext.com
https://netbeans.apache.org

Our first shell script
Start your text editor.

Create a new file called ’first.script.sh’.

Save the file in the ’assignment0’ directory.

Put in the lines to the upper right.

The first line tells the computer to use ’bash’ to
interpret the commands.

The second is a ’comment’. Everything after the #
is ignored by bash.

The other lines are like the commands from two
slides ago. These are the commands to be executed.

DO NOT try to copy-and-paste code from PDF
files! Bad things can happen!

#!/bin/bash

first.script.sh

echo "Hello, world!"

[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090/assignment0

[ejspence.mycomp]

[ejspence.mycomp] ls

first.script.sh

[ejspence.mycomp]

Any commands which you can run
on the command line can be put into
the script.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 7 / 26

File names

Some notes about file names.

Do not try to name files the same names as built-in commands (’echo’, ’pwd’, ’cd’).

Do not put spaces in your file names!

File name extensions do not matter in Linux systems.

Periods in filenames are fine.

Note that Linux systems are case sensitive (”A” is not the same as ”a”). Windows systems
(git bash) may not respect this in general.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 8 / 26

Our first shell script, continued

Note that the code on the upper right is
code as you would put it into your text
editor (such as Atom). The commands on
the lower right are at the bash prompt,
because there is a prompt.

The ’source’ command tells the shell to run
the commands in the script, one at a time.

#!/bin/bash

first.script.sh

echo "Hello, world!"

[ejspence.mycomp]

[ejspence.mycomp] ls

first.script.sh

[ejspence.mycomp]

[ejspence.mycomp] source first.script.sh

Hello, world!

[ejspence.mycomp]

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 9 / 26

Assigning variables

We can create variables in bash.

The ’=’ sign tells the shell to create a
variable called ’myvar’ and assign it the
value ”pants”.

There are no spaces around the ’=’.

The variable’s value is accessed using the $.

When the $ is invoked, the shell finds the
value of the variable and gives it to the
command (echo) to process.

There is nothing special about the variable
”myvar”, you can call variables just about
anything, and have as many as you want.

[ejspence.mycomp]

[ejspence.mycomp] myvar="pants"

[ejspence.mycomp] echo Hello, world

Hello, world

[ejspence.mycomp] echo Hello, $myvar

Hello, pants

[ejspence.mycomp]

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 10 / 26

Our second shell script

#!/bin/bash

second.script.sh

myvar="adoring fans!"

echo Hello, $myvar

Once again, we run the script using the ’source’ command.

[ejspence.mycomp]

[ejspence.mycomp] ls

first.script.sh second.script.sh

[ejspence.mycomp]

[ejspence.mycomp] source second.script.sh

Hello, adoring fans!

[ejspence.mycomp]

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 11 / 26

Our third shell script: arguments

Suppose we’d like our script to behave slightly differently each time we run it. We don’t want
to have to rewrite the script for each possible case. How do pass information into the script,
so we can slightly change its behaviour?

#!/bin/bash

third.script.sh

anothervar="world"

echo Hello, $anothervar ${1}

Information which is passed to a script is called an ’argument’.

Any arguments which are given to a bash script are put into the variables ${1}, ${2}...,
in order.

The script can then access them and use them as needed.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 12 / 26

Our third shell script: arguments, continued

#!/bin/bash

third.script.sh

anothervar="world"

echo Hello, $anothervar ${1}

We run the script using the usual way.

The arguments are accessed using
${1}, ${2}, etc.
third.script.sh only uses the first
argument; any other arguments are
ignored.

We will use scripts in this manner the
rest of the semester, to run
data-analysis pipelines.

[ejspence.mycomp]

[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090/assignment0

[ejspence.mycomp]

[ejspence.mycomp] ls

first.script.sh second.script.sh third.script.sh

[ejspence.mycomp]

[ejspence.mycomp] source third.script.sh pants

Hello, world pants

[ejspence.mycomp]

[ejspence.mycomp] source third.script.sh wide web

Hello, world wide

[ejspence.mycomp]

[ejspence.mycomp] source second.script.sh wide web

Hello, adoring fans!

[ejspence.mycomp]

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 13 / 26

Manipulating files: copying

[ejspence.mycomp]

[ejspence.mycomp] ls

first.script.sh second.script.sh third.script.sh

[ejspence.mycomp]

[ejspence.mycomp] cp first.script.sh first-new

[ejspence.mycomp]

[ejspence.mycomp] ls

first-new first.script.sh second.script.sh

third.script.sh

[ejspence.mycomp]

[ejspence.mycomp] cp first-new ..

[ejspence.mycomp]

[ejspence.mycomp] ls ..

assignment0 first-new

[ejspence.mycomp]

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory
echo arg echo the argument
source file run the cmds in file
cp file1 file2 copy a file

arg mandatory argument
[arg] optional argument

’cp’ stands for ’copy’; it copies a file.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 14 / 26

Manipulating files: moving
[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090/assignment0

[ejspence.mycomp] ls

first-new first.script.sh second.script.sh

third.script.sh

[ejspence.mycomp]

[ejspence.mycomp] mv first-new new.txt

[ejspence.mycomp] ls

first.script.sh new.txt second.script.sh

third.script.sh

[ejspence.mycomp] mv new.txt ../first-new

[ejspence.mycomp] cd ..

[ejspence.mycomp] ls

assignment0 first-new

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory
echo arg echo the argument
source file run the cmds in file
cp file1 file2 copy a file
mv file1 file2 move/rename a file

arg mandatory argument
[arg] optional argument

’mv’ stands for ’move’; it moves a file and/or renames it.

mv can overwrite a file, so be careful when moving things!

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 15 / 26

Manipulating files: deleting
[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090

[ejspence.mycomp]

[ejspence.mycomp] ls

assignment0 first-new

[ejspence.mycomp]

[ejspence.mycomp] rm first-new

[ejspence.mycomp] ls

assignment0

[ejspence.mycomp]

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory
echo arg echo the argument
source file run the cmds in file
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file

arg mandatory argument
[arg] optional argument

’rm’ stands for ’remove’; it deletes a file. It does not delete directories, by default.

rm does not ’move the file to the Trash’. It deletes it; it’s gone; it’s not recoverable. Be
sure before you use rm.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 16 / 26

Wildcards
Wildcards (*) capture all possible
combinations that fit a given description.

[ejspence.mycomp] cd assignment0

[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090/assignment0

[ejspence.mycomp] ls

first.script.sh second.script.sh third.script.sh

[ejspence.mycomp] ls f*

first.script.sh

[ejspence.mycomp] ls *on*

second.script.sh

[ejspence.mycomp] ls *.pants

ls: *.pants: No such file or directory

[ejspence.mycomp] ls *.sh

first.script.sh second.script.sh third.script.sh

[ejspence.mycomp]

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory
echo arg echo the argument
source file run the cmds in file
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file

arg mandatory argument
[arg] optional argument

The shell expands the wildcard into a
list of all possible matches, and passes
the list to the command.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 17 / 26

Head/Tail

[ejspence.mycomp]

[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090/assignment0

[ejspence.mycomp]

[ejspence.mycomp] head -2 first.script.sh

#!/bin/bash

first.script.sh

[ejspence.mycomp]

[ejspence.mycomp] tail -3 third.script.sh

third.script.sh

anothervar="world"

echo Hello, $anothervar ${1}
[ejspence.mycomp]

’head’/’tail’ prints the first/last 10 lines of the
input. Use ”-n” to specify n lines.

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory
echo arg echo the argument
source file run the cmds in file
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
head file print first 10 lines of file
tail file print last 10 lines of file

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 18 / 26

Word count
[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090/assignment0

[ejspence.mycomp] wc first.script.sh

3 6 51 first.script.sh

[ejspence.mycomp] wc -l first.script.sh

3 first.script.sh

[ejspence.mycomp] wc -w first.script.sh

6 first.script.sh

[ejspence.mycomp] wc -c first.script.sh

51 first.script.sh

[ejspence.mycomp] wc -w *

6 first.script.sh

8 second.script.sh

8 third.script.sh

22 total

’wc’ stands for ’word count’. It counts the
number of lines/words/characters in the input.

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory
echo arg echo the argument
source file run the cmds in file
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
head file print first 10 lines of file
tail file print last 10 lines of file
wc file word count data of file

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 19 / 26

Searching files: grep
How do we search for character strings
(words) within files?

[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090/assignment0

[ejspence.mycomp]

[ejspence.mycomp] grep ash first.script.sh

#!/bin/bash

[ejspence.mycomp] grep ello *

first.script.sh:echo "Hello, world!"

second.script.sh:echo Hello, $myvar

third.script.sh:echo Hello, $anothervar ${1}
[ejspence.mycomp]

grep prints the lines from the input that
contain the search argument.

Our commands
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
rmdir dir delete a directory
echo arg echo the argument
source file run the cmds in file
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
wc file word count data of file
grep arg file search for arg in file

arg mandatory argument
[arg] optional argument

grep -v prints the lines from the input
that don’t contain the search argument.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 20 / 26

Pipelines of commands
How do we combine commands?

Suppose we want to take the
output of one command and use it
as the input to another.

Outputting one command straight
into another is so common and
useful that the shell has a special
feature to do this, called the ’pipe’.

The ’pipe’ is the vertical line, found
above your ’return’ key.

Note that the commands that are
receiving information from the pipe
do not take an file argument.

[ejspence.mycomp] pwd

/c/Users/ejspence/MSC1090/assignment0

[ejspence.mycomp]

[ejspence.mycomp] grep var *

second.script.sh:myvar="adoring fans!"

second.script.sh:echo Hello, $myvar

third.script.sh:anothervar="world"

third.script.sh:echo Hello, $anothervar ${1}
[ejspence.mycomp]

[ejspence.mycomp] grep var * | wc -l

4

[ejspence.mycomp]

[ejspence.mycomp] myvar="how long is this sentence?"

[ejspence.mycomp] echo $myvar | wc -c

27

[ejspence.mycomp]

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 21 / 26

The sort command
The sort command can take a number of
important flags:

-n: sort by number (not lexicographic;
10 < 30 without -n).

-k [num]: sort by the k’th column.

-r: reverses order.

-t: indicates a different column separator.

[ejspence.mycomp]

[ejspence.mycomp] wc -c * | sort -n -k 1 -r

191 total

72 second.script.sh

68 third.script.sh

51 first.script.sh

[ejspence.mycomp]

More commands
curl url downloads the url
tar file handles tar files
cmd1 | cmd2 pipe cmd1 output to cmd2

sort file sorts the lines of file

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 22 / 26

Cutting up the output
How do keep just part of the output?

[ejspence.mycomp]

[ejspence.mycomp] grep var * | head -1

second.script.sh:myvar="adoring fans!"

[ejspence.mycomp]

[ejspence.mycomp] grep var * | head -1 | cut -c -8

second.s

[ejspence.mycomp]

[ejspence.mycomp] grep var * | head -1 | cut -c 10-

ript.sh:myvar="adoring fans!"

[ejspence.mycomp]

[ejspence.mycomp] grep var * | head -1 | cut -c 2-5

econ

[ejspence.mycomp]

More commands
curl url downloads the url
tar file handles tar files
cmd1 | cmd2 pipe cmd1 output to cmd2

sort file sorts the lines of file
source file run the cmds in file
grep arg file search for arg in file
cut flags output cut part of output

arg mandatory argument
[arg] optional argument

”-c” tells cut to cut characters.

”-8” means keep
up-to-and-including character
eight.

”10-” means keep 10 and
higher.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 23 / 26

Saving information

If I need to save something, I use variables.

[ejspence.mycomp] echo "How many words are in this sentence?" | wc -w

7

[ejspence.mycomp]

[ejspence.mycomp] i=$(echo "How many words are in this sentence?" | wc -w)

[ejspence.mycomp]

[ejspence.mycomp] echo i

i

[ejspence.mycomp] echo $i

7

[ejspence.mycomp]

[ejspence.mycomp] echo "The value of my variable is $i."

The value of my variable is 7.

[ejspence.mycomp]

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 24 / 26

Enough to get started

These commands are enough to get started with using the command line.

As you have seen, Unix commands are simple, and are designed to do one specific thing.

By combining these commands together we will be able to do more interesting things.

If there is functionality that you think ought to exist, it probably does. Ask someone what
the command is, or google it.

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 25 / 26

Shell-command cheat sheet

pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
man cmd command’s man page
echo arg echo the argument
source file run the cmds in file
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
wc file word count data of file
grep arg file search for arg in file
cmd1 | cmd2 pipe cmd1 output to cmd2

arg mandatory argument
[arg] optional argument

rmdir dir delete a directory
history [num] print the shell history
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd
head file print first 10 lines of file
tail file print last 10 lines of file
curl url downloads the url
tar file handles tar files
sort file sorts the lines of file
cut flags output cut part of output
for..do..done for loop in bash
if..then..fi if statement in bash
logout close the terminal session

Erik Spence (SciNet HPC Consortium) Linux Command Line II 11 September 2025 26 / 26

	Shell scripts
	echo
	Our first shell script
	Assigning variables
	Command line arguments

	Manipulating files
	Wildcards

	More commands
	Head/Tail
	grep
	Pipe
	sort
	cut
	Saving information

