
Neural network programming:
recurrent neural networks

Erik Spence

SciNet HPC Consortium

20 May 2025

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 1 / 30

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1375

Click on the link for the class, under ”Lectures”, click on ”Recurrent neural networks”.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 2 / 30

https://scinet.courses/1375

Today’s class

Today’s class will cover the following topics:

Recurrent neural networks (RNNs).

LSTMs.

Example.

Other RNNs.

Please ask questions if something isn’t clear.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 3 / 30

Dealing with sequential data

So far we’ve focussed on solving problems that involve getting the input data all at once, such
as images.

But suppose we are given information that is sequential instead?

Timeseries data, predicting future trends.

Natural Language Processing (NLP), voice recognition, language translation.

Next-word predictions, question answering.

Handwriting generation.

Generally these data are processed as the data arrives, or generate an output based on a
sequence of inputs, rather than getting the data all at once. This requires a different sort of
network.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 4 / 30

Dealing with sequential data, continued

Sequential data is complicated by the long-term relationships that exist between data points.

Consider the following sentence:

I live in Canada. I speak English and ...

We can all guess what the next word in the sentence probably is. But the information which
we use to determine that word is given in the sentence before.

For a neural network to be able to predict the next word, it must remember that we’re talking
about Canada. This information must stay in the network somehow. The network needs to
’remember’.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 5 / 30

Recurrent neural networks

In most applications dealing with sequential data,
the network needs a means of ”remembering”
previous data.

To this end, the output of a node is fed back into
the network, as part of the input. These are
called ’recurrent’ neural networks. (Not to be
confused with ’recursive’ neural networks.)

This allows the network to have ’memory’, in a
sense.

output

input

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 6 / 30

Recurrent neural networks, continued

This is what the previous
network looks like when
it’s ”unrolled”. All the
orange (and green,
respectively) nodes are
the same node.

The chain-like structure
of these networks
naturally lends itself to
dealing with sequences
and lists.

output 1 output 2 output 3 output 4 output 5

. . .

input 1 input 2 input 3 input 4 input 5

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 7 / 30

Backpropagation through time

How do you perform backpropagation on such a network?

Recall that when we use Stochastic Gradient Descent to train our network, we need the
derivatives of the cost function with respect to the weights and biases.

The obvious problem is that the hidden layer references itself, and thus the references in
the partial derivatives go backward forever in time, as seen in the last slide.

While this is true, one must observe that, if my input sequence is of length n, then the
unrolled version of the network only needs n + 1 steps to calculate the gradient.

So while it may look scary at first, this is actually fairly straightforward.

As with all such problems, backpropagation through time is done automatically in Keras.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 8 / 30

RNNs, continued more

Simple recurrent neural networks suffer from an instability.

Because of the feedback on itself, it naturally acts like an amplifier.

Depending on the activation function, you either get the vanishing
gradient problem (sigmoid), or the exploding gradient problem
(rectifier linear units).

Regularization can help in these cases.

However, the more-common approach is to switch to a different
recurrent network architecture, one which is capable of actively
suppressing the instability.

The most common of these is known as Long Short Term Memory
networks (LSTMs), though others are also used.

LSTMs have been trained to do some amazing things.

output

input

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 9 / 30

Recall the sigmoid function

σ(z) =
1

1 + e−z

This function is ideal for
’gates’.

8 6 4 2 0 2 4 6 8

z

0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 10 / 30

Recall the tanh function

tanh(z) =
ez − e−z

ez + e−z

In LSTMs these are used to scale the output
to between -1 and 1.

4 3 2 1 0 1 2 3 4
z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 tanh

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 11 / 30

Long Short Term Memory networks (1997)

tanh

x

x

x

+

σ

σ

tanh

σ
output

input

single
neuron

pointwise
operation

forget gate

input gate

input node

output gate

internal state

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 12 / 30

Notes about LSTM memory cells

Some notes about these memory cells.

The ’input node’ is a standard input node. These typically use a tanh activation function,
though others can be used.

How much of the input is added to the ’internal state’ (also called the ’hidden state’) is
controlled by the ’input gate.’

The ’forget gate’ controls how much of the internal state we’re keeping, based on the
input.

The ’output gate’ controls how much of the internal state is output.

The internal state is put through a tanh function before output. This is optional, and is
only done to put the output in the same range (-1 to 1) as a typical hidden layer. Some
implementations use other functions such as rectifier linear units.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 13 / 30

Notes about LSTMs

Some notes about LSTMs in networks.

Each ’memory cell’ is treated like a single neuron in a hidden layer. Typically there are
many such cells in such a layer.

In the Keras implementation of LSTMs, not only is the output of a single LSTM cell
concatenated to its input, the output of all the LSTM cells in the layer are concatenated
to the input.

These networks are trained in the usual way, using Stochastic Gradient Descent and
Backpropagation, as with other neural networks.

These have been used in language translation, voice recognition, handwriting analysis,
next-letter prediction, and many many other applications.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 14 / 30

LSTM example

One common application of LSTMs is text prediction. Let’s use an LSTM network to create a
recipe.

We will use the recipe data set, which is a text file containing 4869 recipes.

We take the recipe data set, as a single file, and analyse it to find all unique words.

We then one-hot-encode the words in the data set using our word list.

We then break the data set into 50-word one-hot-encoded chunks (”sentences”).

We will then train the network:
▶ the input will be the 50-word-encoded chunks.
▶ the target will be the next word in the data set.

Once the network is trained we can feed the network a random sentence as a seed, and it
will use that sentence to generate new words, until we have a new recipe.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 15 / 30

LSTM example, the data
ejspence@mycomp ~> head -24 allrecipes.txt

Almond Liqueur

Amount Measure Ingredient -- Preparation Method
-------- ------------ --------------------------------

3 cup sugar
2 1/4 cup water

3 lemons; the rind -- finely grated
1 quart vodka
3 tablespoon almond extract
2 tablespoon vanilla extract

Combine first 3 ingredients in a Dutch oven; bring to a boil. Reduce
heat and simmer 5 minutes, stirring occasionally; cool
completely. Stir in remaining ingredients; store in airtight
containers.

Yield: about 6 1/2 cups.

--

Cafe Mexicano
Amount Measure Ingredient -- Preparation Method

-------- ------------ --------------------------------

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 16 / 30

~

One-hot encoding

One way of portraying sentences is one-hot encoding. In this representation, all words are
given an index in a vector of length num words. The word gets a ’1’ when the word occurs
and a ’0’ when it doesn’t. The sentence then consists of an array of sentence length rows and
num words columns.

Consider the sentence ”The dog is in the dog crate.”

The number of unique words is 5. Each word gets its
own index: {the: 0, dog: 1, is: 2, in: 3, crate: 4}.

The sentence above can then be represented by the
matrix to the right, with dimensions (sentence length,
num words).

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 17 / 30

Our LSTM network

The network is simple:

The input has dimensions
(sentence length,
n words)

sentence length = 50

n words = number of
unique words in the data.

The LSTM layer has 256
nodes.

The output layer is
fully-connected, of length
n words.

input layer

LSTM

output

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 18 / 30

LSTM example, data preprocessing
Before being used, the data needs to be preprocessed so that the network has an easier time
learning. How is it preprocessed?

Put spaces around the punctuation, so that ”word!” becomes ”word !” This is done so
that ”word” and ”word!” are not counted as two distinct words.

Do the same with new line symbols.

Treat multiple dash combinations as words, put spaces around single dashes.

Change all entries to lower case.

Split on spaces.

Separate all new line characters from words, so that ”word” and ”word\n” are not
considered distinct words.

Remove all spaces from the data (this was key).

Remove all words that show up less than 5 times.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 19 / 30

LSTM example, learning code
Learn Recipes.py

import numpy as np; import shelve

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

Read the data set, preprocess (not shown).

f = open(’allrecipes.txt’)

corpus = f.read(); f.close()

Create the list of words.

words = sorted(list(set(corpus)))

n words = len(words)

Create word-index encodings.

encoding = {w: i for i, w in enumerate(words)}
decoding = {i: w for i, w in enumerate(words)}
Initialize some parameters.

sentence len = 50; xdata = []; ydata = []

Break up the corpus into sentences.

for i in range(len(corpus) - sentence len):

sentence = corpus[i: i + sentence len]

next word = corpus[i + sentence len]

xdata.append([encoding[w] for w in sentence])

ydata.append(encoding[next word])

The one-hot-encoded variables.

n sentences = len(xdata)

x = np.zeros((n sentences, sentence len,

n words), dtype = bool)

y = np.zeros((n sentences, n words))

Populate the variables.

for i, sentence in enumerate(xdata):

for t, encoded word in enumerate(sentence):

x[i, t, encoded word] = 1

y[i, ydata[i]] = 1

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 20 / 30

LSTM example, learning code, continued

Learn Recipes.py, continued

Save the metadata.

g = shelve.open("data/recipes.shelve")

g["sentence len"] = sentence len

g["n words"] = n words

g["encoding"] = encoding

g["decoding"] = decoding

g.close()

Create the NN.

model = km.Sequential()

A layer of LSTMs.

model.add(kl.LSTM(256,

input shape = (sentence len, n words)))

Add a fully-connected output layer.

model.add(kl.Dense(n words, activation = ’softmax’))

The usual compilation.

model.compile(loss = ’categorical crossentropy’,

optimizer = ’sgd’, metrics = [’accuracy’])

Run the fit.

fit = model.fit(x, y, epochs = 200,

batch size = 128, verbose = 2)

Save the model.

model.save(’data/recipes.model.keras’)

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 21 / 30

LSTM example, running

Do not run this. And don’t even think of running it without a GPU.

ejspence@mycomp ~>
ejspence@mycomp ~> python Learn Recipes.py

Epoch 1/200

- 208s - loss: 4.3052 - acc: 0.2560

Epoch 2/200

- 201s - loss: 3.3269 - acc: 0.3635
.
.
.

Epoch 198/200

- 209s - loss: 0.0727 - acc: 0.9787

Epoch 199/200

- 206s - loss: 0.0732 - acc: 0.9784

Epoch 200/200

- 204s - loss: 0.0722 - acc: 0.9789

ejspence@mycomp ~>

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 22 / 30

~
~
~

LSTM example, generating code
Generate Recipe.py

import shelve, numpy as np

import tensorflow.keras.models as km

import random

Read the parameters.

g = shelve.open("data/recipes.shelve")

sentence len = g["sentence len"]

n words = g["n words"]

encoding = g["encoding"]

decoding = g["decoding"]; g.close()

Create a random seed sentence.

seed = []

for i in range(sentence len):

seed.append(decoding[random.randint(0,

n words - 1)])

Get the model.

model = km.load model(data/recipes.model.h5’)

Create and populate the x data.

x = np.zeros((1, sentence len, n words), dtype = bool)

for i, w in enumerate(seed): x[0, i, encoding[w]] = 1

text = ""

for i in range(1000):

pred = np.argmax(model.predict(x, verbose = 0))

text += decoding[pred] + " "

next word = np.zeros((1, 1, n words), dtype = bool)

next word[0, 0, pred] = 1

x = np.concatenate((x[:, 1:, :], next word), axis = 1)

print("Our recipe:")

print(text)

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 23 / 30

LSTM example, prediction
ejspence@mycomp ~> python Generate Recipe.py

sour cream and horseradish whip squares

amount measure ingredient -- preparation method

-------- ------------ --------------------------------

1 3/4 pounds top flour -- frozen

1/2 cup olive oil

1/4 cup lemon juice

1 teaspoon garlic -- finely minced

1 teaspoon lemon rind -- finely grated

1 teaspoon vanilla extract

prepare the baking dish in a bowl , make crust , with the topping . set aside . add all

dry ingredients , blend well with an electric mixer . beat the egg whites with a mixer until

blended and bake at 350f , for 15 minutes . remove from firm , and carefully pour over margarine

. bake until tester is well blended , 8 to 10 minutes with small spatula , ; sprinkle with

confectioner’s sugar . sprinkle chopped pecans over peaches . spread immediately .

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 24 / 30

~

LSTM example, notes

Some notes about this example.

The model gets 97% training accuracy so far (overfitting?).

Getting it this far took over 12 hours of training on a GPU.

Note the things that it gets correct:
▶ It creates a title.
▶ It correctly lays out the amount/measure/ingredients table.
▶ It lays out ingredients with sensible amounts.
▶ The instructions are more-or-less sensible.

The things it gets wrong:
▶ The instructions reference ingredients which are not in the ingredients list.

Further training might improve this. A larger dataset would improve it even more.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 25 / 30

LSTM example, notes continued

Some more notes about this example.

Examine the code if you want to see how the data was preprocessed.

In particular, the many blank spaces, which created the nice formatting of the recipes,
were removed, since they were dominating the fit.

You need a large amount of data to train this model (there are a large number of
parameters). Consequently it takes a long time. Use a GPU!

The field of Natural Language Processing used to be based on techniques similar to this.
More modern techniques have been developed, which we’ll cover in the next two classes.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 26 / 30

Other types of RNNs

There are many types of RNNs out there.

Gated Recurrent Units (GRUs). These are similar to LSTMs, and are the leading
competitor to them. We’ll look at these in more detail.

Bidirectional RNNs. Sometimes your output depends not just on data points that came
previously, but also on future data points. These networks are just two RNNs glued
together, reading the input from opposite directions.

Fully-recurrent neural networks. In these, every node is connected to every node in the
network, including itself.

Variations on LSTMs. There are many: LSTMs with ’peep holes’, LSTMs with combined
input and forget gates, and many others.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 27 / 30

Gated Recurrent Units

x

x

-1

+x

σ

tanh

σ

output

input

single
neuron

pointwise
operation

update gate

internal state

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 28 / 30

Gated Recurrent Units, notes

Some notes about gated recurrent units (GRUs).

Are GRUs better than LSTMs? In many situations they give similar results.

But because there are fewer trainable neurons in a GRU it will train faster than an LSTM.

Side note: only LSTMs, GRUs and SimpleRNNs are implemented in Keras. SimpleRNNs
are essentially the nodes described at the beginning of class. They are supplied for
educational purposes only; do not use them.

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 29 / 30

Linky goodness

RNNs and LSTMs:

https://www.bioinf.jku.at/publications/older/2604.pdf

https://karpathy.github.io/2015/05/21/rnn-effectiveness

https://colah.github.io/posts/2015-08-Understanding-LSTMs

https://www.deeplearningbook.org/contents/rnn.html

https:

//dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-1

Erik Spence (SciNet HPC Consortium) Recurrent neural networks 20 May 2025 30 / 30

https://www.bioinf.jku.at/publications/older/2604.pdf
https://karpathy.github.io/2015/05/21/rnn-effectiveness
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://www.deeplearningbook.org/contents/rnn.html
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-1
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-1

	Sequential data
	Recurrent neural networks
	Backpropagation through time

	A different approach
	LSTMs

	Example
	The data
	One-hot encoding
	The network
	The code

	Other RNNs
	Gated recurrent units

