
Neural network programming:
diffusion models

Erik Spence

SciNet HPC Consortium

13 May 2025

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 1 / 34

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1375

Click on the link for the class, and look under ”Lectures”, click on ”Diffusion models”.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 2 / 34

https://scinet.courses/1375

Today’s class

This class will cover the following topics:

Diffusion model approach.

Develop our cost function.

Example.

Please ask questions if something isn’t clear.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 3 / 34

Problems with GANs

GANs were state-of-the-art for many years. They are powerful, and have impressive results.
But GANs have serious problems associated with them.

Because there are two networks that are trained independently, there is no single
cost-function global minimum that we can search for.

This results in an unstable situation, as we are searching for a Nash equilibrium.

Consequently, these models can be very hard to train. Optimization of hyperparameters,
and some luck, is necessary for success.

We’d like an approach that is more robust, training-wise.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 4 / 34

Diffusion models (2015/2020)

Diffusion models are a type of generative model.

Originally introduced in 2015, but forgotten for a few years during the height of the GANs
excitement.

These were originally used to generate images, though in principle you could use it to
generate any type of continuous data.

They sample from P (x) by gradually reversing a ’noising’ process.

Suppose we start with an image, x0, and add noise to it through a series of T steps.
Eventually all you have left is pure noise. This is called the ’forward diffusion’.

The goal of the model is to reverse this process.

Thus, we start with just pure noise, and the model eventually converts it into an image
drawn from P (x).

The starting point is the same as that of GANs: just noise.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 5 / 34

Forward diffusion

To train these models we need a specially-modified version of whatever data set we are using.

We start with a data point sampled from our data set, x0.

We need to define the process by which we create xt from xt−1. This is a Markov
process.

Specifically, at each step we add Gaussian noise with variance βt to xt−1. The variance
can be constant, but usually varies with t.

This produces our new data, xt, with a probability distribution of q(xt|xt−1).

q(xt|xt−1) = N(
√

1 − βtxt−1, βt)

Where N is our normal distribution, and we’re assuming a diagonal variance matrix with value
βt.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 6 / 34

Forward diffusion, illustrated

x0 ... xt−1 xt

q(xt|xt−1)
... xT

→ · · · → → · · · → → · · · →

t = 0 t = 100 t = 300 t = 1000

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 7 / 34

Forward diffusion, continued

This is ok, except for the fact that we need to generate noise and add it to x0 many times.
Can’t we do better?

It turns out that the answer is yes, using our old friend the reparameterization trick, but doing
so recursively. This allows us to jump from x0 straight to xt.

xt =
√

1 − βtxt−1 +
√

βtϵt

=
√

1 − βt

[√
1 − βt−1xt−2 +

√
βt−1ϵt−1

]
+
√
βtϵt

...

=
√
ᾱtx0 +

√
1 − ᾱtϵt

where we assume that ϵt = ϵt−1 = · · · = ϵ ∼ N(0, 1), and αt = 1 − βt,
ᾱt =

∏t
1 αt.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 8 / 34

Forward diffusion, continued more

So rather than use q(xt|xt−1) = N(
√
1 − βtxt−1, βt), we instead use

q(xt|x0) = N(
√
ᾱtx0, (1 − ᾱt))

We thus don’t need to compute every value, x1, x2, . . . , xt−1, to calculate xt.

Since βt is a hyperparameter we can precompute ᾱt for all t.

The variance parameter βt can be a constant, or it can change on a schedule.

The original DDPM authors used a linear schedule, with β1 = 10−4 and βT = 0.02.

More recently it’s been demonstrated that a cosine schedule works better.

This class of diffusion models is known as DDPM (Denoising Diffusion Probabilistic Models).

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 9 / 34

Reverse diffusion

Now we want to reverse the process: start with purge Gaussian noise, and end up with an
image.

To reverse the process we will need to learn q(xt−1|xt).

If T is large then xT is essentially just noise.

Thus, if we have q(xt−1|xt) we can start with just noise and reverse the process until we
end up with x0.

This is equivalent to sampling from P (x), the probability distribution of the original data
set.

But how do we do that? How do we get q(xt−1|xt)?

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 10 / 34

Reverse diffusion, continued

Using an approach similar to the one we used for Variational Autoencoders, we can model
q(xt−1|xt) with a different function, pθ(xt−1|xt).

If βt is small enough, we can take q(xt−1|xt) to be Gaussian, with
q(xt−1|xt) = N(µq(xt, t),Σq(xt, t))

Since q(xt−1|xt) is Gaussian, we choose pθ(xt−1|xt) to be Gaussian as well.

pθ(xt−1|xt) = N(µθ(xt, t),Σθ(xt, t))

Finally, applying the reverse process to xT to arrive at x0 we have

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt)

where pθ(x0:T) is known as a trajectory, and p(xT) = N(0, 1).

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 11 / 34

Getting the reverse probability

We already determined, some slides ago, that

q(xt|x0) = N(
√
ᾱtx0, (1 − ᾱt))

Using this, and Bayes’ theorem, we can condition q(xt−1|xt) on x0:

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)

=
N(

√
αtxt−1, (1 − αt))N(

√
ᾱt−1x0, (1 − ᾱt−1))

N(
√
ᾱtx0, (1 − ᾱt))

...

∝ N

(√
αt(1 − ᾱt−1)xt +

√
ᾱt−1(1 − αt)x0

1 − ᾱt
,
(1 − αt)(1 − ᾱt−1)

1 − ᾱt

)

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 12 / 34

Getting the reverse probability, continued

Ok, so we have that

µq(xt, x0, t) =

√
αt(1 − ᾱt−1)xt +

√
ᾱt−1(1 − αt)x0

1 − ᾱt

But recall that

xt =
√
ᾱtx0 +

√
1 − ᾱtϵt

and thus, after some algebra, we have

µq(xt, t) =
1

√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵt

)

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 13 / 34

Getting the reverse probability, continued more

Ok, we’ve got a simplified version of q(xt−1|xt, x0):

q(xt−1|xt, x0) = N

(
µq(xt, t),

(1 − αt)(1 − ᾱt−1)

1 − ᾱt

)
with

µq(xt, t) =
1

√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵt

)

How does that help us? But we still need pθ(xt−1|xt). What’s the plan there?

We can follow an approach similar to the one we used for Variational Autoencoders. We can
try to maximize the log of pθ(x).

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 14 / 34

Bayesian inference, again

We now follow a similar calculation which we used for Variational Autoencoders.

log (pθ(x)) = log

∫
pθ(x0:T)dx1:T

= log

∫
pθ(x0:T)

q(x1:T |x0)

q(x1:T |x0)
dx1:T

= log Eq(x1:T |x0)

[
pθ(x0:T)

q(x1:T |x0)

]
≥ Eq(x1:T |x0)

[
log

(
pθ(x0:T)

q(x1:T |x0)

)]

Where we have used Jensen’s inequality in the last step.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 15 / 34

Bayesian inference, again, continued

log (p(x)) ≥ Eq(x1:T |x0)

[
log

(
pθ(x0:T)

q(x1:T |x0)

)]
≥ Eq(x1:T |x0)

[
log

(
pθ(xT)

∏T
t=1 pθ(xt−1|xt)∏T

t=1 q(xt|xt−1)

)]
...

≥ Eq(x1|x0) [log (pθ(x0|x1))] − DKL(q(xT |x0)||pθ(xT)) −
T∑

t=2

Eq(xt|x0) [DKL (q(xt−1|xt, x0)||pθ(xt−1|xt))]

where we have skipped many many steps in the derivation. See the references on the
last slide for details.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 16 / 34

Understanding the terms

It may not look like it, but this represents progress. Each term can now be calculated from at
most one random variable at a time. How do we interpret these terms?

Eq(x1|x0) [log (pθ(x0|x1))]: this is analogous to the first term in our VAE derivation.
This is the term to be maximized.

DKL(q(xT |x0)||pθ(xT)): this estimates how close the noisified input, xT , is to the
standard Gaussian prior. This can be taken to be zero.

Eq(xt|x0) [DKL (q(xt−1|xt, x0)||pθ(xt−1|xt))]: this represents how well we’re
denoising. We are trying to determine pθ(xt−1|xt) as approximated by q(xt−1|xt, x0).
This term is minimized when the denoising steps are close to each other, as measured by
the KL divergence.

The training work lies in approximating q(xt−1|xt, x0) using pθ(xt−1|xt).

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 17 / 34

Understanding the terms, continued

Recall that both q(xt−1|xt, x0) and pθ(xt−1|xt) can be represented by Gaussians. As such,
the KL divergence can be calculated exactly.

DKL (q(xt−1|xt, x0)||p(xt−1|xt)) = DKL (N(µq,Σq(t))||N(µθ,Σθ(t)))

...

=
1 − ᾱt

2(1 − αt)(1 − ᾱt−1)
||µθ − µq||22

where we have assumed the form

µθ(xt, t) =
1

√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵθ(xt, t)

)
which should be fine, since xt is available at training time.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 18 / 34

Understanding the terms, continued more

We will model ϵθ(xt, t) using our neural network. We already know that

µq(xt) =
1

√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵt

)
µθ(xt) =

1
√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵθ(xt, t)

)

DKL (q(xt−1|xt, x0)||p(xt−1|xt)) =
1 − ᾱt

2(1 − αt)(1 − ᾱt−1)
||µq − µθ||22

...

=
(1 − αt)

2(1 − ᾱt−1)αt
||ϵt − ϵθ(xt, t)||22

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 19 / 34

Understanding the terms, continued even more

We already know that

xt =
√
ᾱtx0 +

√
1 − ᾱtϵt

L = Eq(xt|x0)

[
(1 − αt)

2(1 − ᾱt−1)αt
||ϵt − ϵθ(xt, t)||22

]
= Eq(xt|x0)

[
(1 − αt)

2(1 − ᾱt−1)αt

∣∣|ϵt − ϵθ(
√
ᾱtx0 +

√
1 − ᾱtϵt, t)|

∣∣2
2

]
The original authors found that the prefactor in front is unnecessary. So we instead use

L = Eq(xt|x0)

[∣∣|ϵt − ϵθ(
√
ᾱtx0 +

√
1 − ᾱtϵt, t)|

∣∣2
2

]
as our loss function.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 20 / 34

Diffusion models

How are such models trained?

We first need to calculate our noise variance schedule, {β1, . . . , βT}. From this we get
αt = 1 − βt and ᾱt =

∏t
i=1 αi.

We then need a data set on which to train our model. Each data sample in our training
batch is created by

▶ randomly sampling an x0 from our original data set,
▶ randomly sampling a noise step, t,
▶ randomly sampling some noise, to get ϵt,
▶ combining x0 and ϵ to create xt =

√
ᾱtx0 +

√
1 − ᾱtϵt.

The model is then trained to predict the noise of the image, ϵt, given xt and t.

A mean-squared (quadratic) loss function is used.

This class of diffusion models is known as DDPM (Denoising Diffusion Probabilistic Models).

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 21 / 34

Example

Let’s do something more
ambitious than MNIST. We
will use the cats from the
cats-and-dogs data set.

Colour images of cats.

The images have been
resized to 64 x 64 pixels
only (very grainy!).

We will set β1 = 10−4,
βT = 0.02, with
T = 1000.

We will use a modified U-Net
architecture for our model.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 22 / 34

U-Net

xt Conv3Layer

Down layer

Down layer

Down layer

+ Conv3Layer

Concat Up layer

Concat Up layer

Concat Up layer

Concat

Conv2D ϵθ

t

fully-connected

sin(x)

fully-connected

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 23 / 34

Diffusion network example, code
unet.py

import tensorflow as tf

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

import tensorflow.keras.saving as ks

@ks.register keras serializable(package = "MyLayers")

class Conv3Layer(kl.Layer):

def init (self, num chan, is res = False, **kwargs):

super(). init (**kwargs)

self.num chan = num chan

self.Conv2D 1 = kl.Conv2D(num chan, kernel size = (3, 3),

padding = ’same’, activation = ’linear’)

self.Norm 1 = kl.GroupNormalization(groups = 8)

self.Conv2D 2 = kl.Conv2D(num chan, kernel size = (3, 3),

padding = ’same’, activation = ’linear’)

self.Norm 2 = kl.GroupNormalization(groups = 8)

self.is res = is res

unet.py, continued

def call(self, inputs):

x = self.Conv2D 1(inputs)

x = self.Norm 1(x)

x1 = kl.ReLU()(x)

x = self.Conv2D 2(x1)

x = self.Norm 2(x)

x = kl.ReLU()(x)

if self.is res: x = (x1 + x)

return x

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 24 / 34

Diffusion network example, code, continued
unet.py, continued

@ks.register keras serializable(

package = "MyLayers")

class UnetDownLayer(kl.Layer):

def init (self, num chan, **kwargs):

super(). init (**kwargs)

self.num chan = num chan

self.Conv3 = Conv3Layer(num chan)

self.MaxPool2D = kl.MaxPool2D(

pool size = (2, 2), strides = 2)

def call(self, inputs):

x = self.Conv3(inputs)

x = self.MaxPool2D(x)

return x

unet.py, continued

@ks.register keras serializable(package = "MyLayers")

class UnetUpLayer(kl.Layer):

def init (self, num chan, **kwargs):

super(). init (**kwargs)

self.num chan = num chan

self.Conv2DTranspose = kl.Conv2DTranspose(num chan,

kernel size = (3, 3), padding = ’same’,

activation = ’linear’)

self.Conv3 1 = Conv3Layer(num chan)

self.Conv3 2 = Conv3Layer(num chan)

def call(self, inputs):

img input, skip = inputs

x = tf.concat([img input, skip], -1)

x = self.Conv2DTranspose(x)

x = self.Conv3 1(x); x = self.Conv3 2(x)

return x

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 25 / 34

Diffusion network example, code, continued more
unet.py, continued

def NaiveUnet(input shape, n feat):

img in = kl.Input(shape = input shape)

t in = kl.Input(shape = (1,))

x = Conv3Layer(n feat, is res = True)(img in)

d1 = UnetDownLayer(n feat)(x)

d2 = UnetDownLayer(2 * n feat)(d1)

d3 = UnetDownLayer(2 * n feat)(d2)

thro = kl.AveragePooling2D(

pool size = (4, 4))(d3)

thro = kl.ReLU()(thro)

t emb = TimeLayer(2 * n feat)(t in)

t emb = kl.Reshape((1, 1, 2 * n feat))(t emb)

unet.py, continued

thro = kl.Conv2DTranspose(2 * n feat,

kernel size = (3, 3), padding = ’same’,

activation = ’relu’)(thro + t emb)

thro = kl.GroupNormalization(groups = 8)(thro)

thro = kl.ReLU()(thro)

up1 = UnetUpLayer(2 * n feat)([thro, d3])

up2 = UnetUpLayer(2 * n feat)([up1, d2])

up3 = UnetUpLayer(2 * n feat)([up2, d1])

out = kl.Concatenate(axis = -1)([up3, x])

out = kl.Conv2D(3, kernel size = (3, 3),

padding = ’same’, activation = ’linear’)(out)

return km.Model(outputs = out,

inputs = [img in, t in])

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 26 / 34

Diffusion network example, code, continued even more
diffusion model.py

from unet import NaiveUnet

from ddpm import ddpm schedule

import tensorflow.keras.models as km

n epochs, batch size = 300, 64

n feats = 512

image shape = (64, 64, 3)

beta1, beta2, T = 1e-4, 0.02, 1000

sched = ddpm schedule(beta1, beta2, T)

Go get the data. Normalize.

model = NaiveUnet(image shape, n feat)

model.compile(loss = ’mse’,

metrics = [’mse’], optimizer = ’adam’)

diffusion model.py, continued

for i in range(n epochs):

loss = 0

for image batch in train data:

this batch = image batch.shape[0]

this size = list(image shape).insert(0, this batch)

eps = tf.random.normal(this size)

t ind = tf.random.uniform([this batch],

minval = 1, maxval = T + 1, dtype = tf.int32)

sqrtab = tf.gather(sched[’sqrtab’], t ind)

sqrtmab = tf.gather(sched[’sqrtmab’], t ind)

sqrtab = tf.reshape(sqrtab, (this batch, 1, 1, 1))

sqrtmab = tf.reshape(sqrtmab, (this batch, 1, 1, 1))

x t = sqrtab * image batch + sqrtmab * eps

t input = t ind / T

loss += model.train on batch([x t, t input], eps)[0]

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 27 / 34

Training our Diffusion model

This takes many many days of training on a GPU (it has 129 million free parameters).

ejspence@mycomp ~>
ejspence@mycomp ~> python diffusion model.py

Epoch :0 loss :387.72831055894494

Epoch :1 loss :14.70780010893941

Epoch :2 loss :11.63943213969469

.

.

.

Epoch :1797 loss :3.040174555964768

Epoch :1798 loss :2.9104982246644795

Epoch :1799 loss :2.8991684457287192

ejspence@mycomp ~>

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 28 / 34

~
~
~

Diffusion models, continued more
Ok, so we’ve got a network that can predict noise. How does that help?

pθ(xt−1, xt) = N(µθ(xt, t),Σθ(xt, t))

µθ(xt, t) =
1√
ᾱt

(
xt −

1 − αt√
1 − ᾱt

ϵθ

)
Σθ(xt, t)) =

βt (1 − ᾱt−1)

1 − ᾱt

We can use this to do the reverse diffusion:

We start with straight-up noise, xT . We set T to large.

We then start using our model to predict ϵθ, given xt and t. We then calculate µθ.

We then generate xt−1 = µθ(xt, t) +
√
βtϵt. In practice the factor of

(1 − ᾱt−1)/(1 − ᾱt) is about 1, and is dropped.

We decrement: t = t − 1. We then repeat until we remove all of the noise (t = 0).

Typical values of T are about 1000.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 29 / 34

Reverse diffusion example, code
reverse diffusion.py

import tensorflow as tf, numpy as np

import tensorflow.keras.models as km

from ddpm import ddpm schedule

from unet import *

def my sample(image shape = [64, 64, 3]

n sample = 1):

The noise schedule.

beta1, beta2, T = 1e-4, 0.02, 1000

sched = ddpm schedule(beta1, beta2, T)

this size = list(image shape)

this size.insert(0, n sample)

Our pre-training model.

model = km.load(’model.keras’)

reverse diffusion.py, continued

Starting image.

x t = tf.random.normal(this size)

for i in range(T, -1, -1):

z = tf.random.normal(this size) if i > 0 else: 0

t = tf.repeat(tf.constant(i / T), n sample)

eps = model.predict([x t, t], verbose = 0)

x t = sched[’oneover sqrta’][i] * \

(x t - sched[’mab over sqrtmab’][i] * eps) +

sched[’sqrt beta t’][i] * z

return np.array(x t * 255).astype(’int16’)

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 30 / 34

Reverse diffusion example
In [1]:

In [1]: import matplotlib.pyplot as plt

In [2]: import reverse diffusion as rd

In [3]:

In [3]: a = rd.my sample()

1000

999

998
.
.
.

2

1

0

In [3]:

In [3]: plt.imshow(a[0])

In [4]:

t = 1000 t = 200

t = 50 t = 0
Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 31 / 34

Reverse diffusion example, continued

Some are good. Some are not

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 32 / 34

Improvements

Since re-discovery in 2020, a number of improvements to the basic diffusion network have
been developed:

Change the noise schedule, βt. We used linear, others have used
▶ a cosine dependence for βt,
▶ have the βt dependence be learnable (quite complicated).

Add category information to the image, and add that to the diffusion process. The
reverse diffusion can then be guided to an image of a particular category. How?

▶ Have a separate classification network that works with the diffusion network.
▶ Have the classification be part of the diffusion process itself.

Speed up the reverse diffusion process using ’strided sampling’, by taking steps in t of size
S instead of 1.

This an active area of research.

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 33 / 34

Linky goodness

Diffusion models:

https://arxiv.org/abs/1503.03585

https://arxiv.org/abs/2006.11239

https://arxiv.org/abs/2006.09011

https://arxiv.org/abs/2105.05233

https://arxiv.org/abs/2208.11970

https://theaisummer.com/diffusion-models

https://arxiv.org/abs/2010.02502

https://lilianweng.github.io/posts/2021-07-11-diffusion-models

Erik Spence (SciNet HPC Consortium) Diffusion models 13 May 2025 34 / 34

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.09011
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2208.11970
https://theaisummer.com/diffusion-models
https://arxiv.org/abs/2010.02502
https://lilianweng.github.io/posts/2021-07-11-diffusion-models

	Diffusion models
	Forward diffusion

	Reverse diffusion
	Reverse probability
	Bayesian inference
	The terms

	Example
	U-Net
	Diffusion network code
	Reverse diffusion code

