
Python Programming for HPC (HPC111)

Ramses van Zon

April 22, 2025

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 1 / 68

In this workshop. . .

1 Performance and Python
2 Profiling tools for Python
3 Fast arrays for Python
4 Parallel computing in Python

For completion of the course, you
will need to do a small
assignment.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 2 / 68

http://www.scinethpc.ca

Setting up for this session
To get set up to following along, perform the following steps.

1 Login to the SciNet Teach cluster:
$ ssh -Y -l lcl_uothpc111s11NN teach.scinet.utoronto.ca

(NN is different for everyone)
2 Copy code for this session:

$ cp -r ~rzon/hpcpycode $HOME

3 Request interactive resources:
$ debugjob -n 4

4 Setup the environment:
$ cd $HOME/hpcpycode
$ source activate

(repeat the last two steps any time you log back in)
Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 3 / 68

http://www.scinethpc.ca

1

1. Performance and Python

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 4 / 68

Performance and Python

Python is a high-level, interpreted language.
Those defining features are often at odds with “high performance”.
Python is fairly easy to learn, very expressive, and, not surprisingly, very popular.
But development in Python can be substantially easier (and thus faster) than when using compiled
languages.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 5 / 68

http://www.scinethpc.ca

Example: 2D Diffusion

Suppose we are interested in the time evolution of the two-dimensional diffusion equation:

∂ϱ(x, y, t)
∂t

= D

(
∂2ϱ(x, y, t)

∂x2 +
∂2ϱ(x, y, t)

∂y2

)
on domain [x1, x2] ⊗ [x1, x2],
with ϱ(x, y, t) = 0 at all times for all points on
the domain boundary,
with some given initial condition
ϱ(x, y, t) = ϱ0(x, y).

Here:
ϱ: density
x, y: spatial coordinates
t: time
D: diffusion constant

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 6 / 68

http://www.scinethpc.ca

Example 1: 2D Diffusion, Result
x1 = −10, x2 = 10, D = 1, four-peak initial condition.

t=0 t=1 t=2

t=4 t=6 t=10

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 7 / 68

http://www.scinethpc.ca

Example 1: 2D Diffusion, the Algorithm
Discretize space in both directions
(points dx apart)
Replace derivatives with finite differences.
Explicit finite time stepping scheme
(time step set by dx)
For graphics: Matplotlib for Python, pgplot for
C++/Fortran, every outtime time units

Parameters in file diff2dparams.py
(also used by C++ and Fortran versions).
D = 1.0;
x1 = -10.0;
x2 = 10.0;
runtime = 10.0;
dx = 0.075;
outtime = 0.5;
graphics = True;

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 8 / 68

http://www.scinethpc.ca

Example 1: 2D Diffusion, the Algorithm
Discretize space in both directions
(points dx apart)
Replace derivatives with finite differences.
Explicit finite time stepping scheme
(time step set by dx)
For graphics: Matplotlib for Python, pgplot for
C++/Fortran, every outtime time units

Parameters in file diff2dparams.py
(also used by C++ and Fortran versions).
D = 1.0;
x1 = -10.0;
x2 = 10.0;
runtime = 10.0;
dx = 0.075;
outtime = 0.5;
graphics = False;

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 9 / 68

http://www.scinethpc.ca

Example 1: 2D Diffusion, Performance
The files diff2d.cpp, diff2.f90 and diff2d.py contain the same code in C++, Fortran, and Python.
$ time make diff2d_cpp.ex diff2d_f90.ex

g++ -c -O3 -march=native -o diff2d_cpp.o diff2d.cpp
g++ -c -O3 -march=native -o diff2dplot_cpp.o diff2dplot.cpp
g++ -o diff2d_cpp.ex diff2d_cpp.o diff2dplot_cpp.o -lcpgplot -lpgplot -lX11 -lxcb -ldl -lXau -lgfortran -lpng
gfortran -c -O3 -march=native -o pgplot90.o pgplot90.f90
gfortran -c -O3 -march=native -o diff2dplot_f90.o diff2dplot.f90
gfortran -c -O3 -march=native -o diff2d_f90.o diff2d.f90
gfortran -o diff2d_f90.ex diff2d_f90.o diff2dplot_f90.o pgplot90.o -lcpgplot -lpgplot -lX11 -lxcb -ldl -lXau -lgfortran -lpng

Elapsed: 4.34 seconds

$ time ./diff2d_cpp.ex > output_c.txt

Elapsed: 0.98 seconds

$ time ./diff2d_f90.ex > output_f.txt

Elapsed: 0.83 seconds

$ time python diff2d.py > output_p.txt

Elapsed: 171.35 seconds

This doesn’t look promising for Python for HPC.
The Python version is 200× slower than the
compiled versions!

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 10 / 68

http://www.scinethpc.ca

Then why do we bother with Python?
from diff2dplot import plotdens
from diff2dparams import D,x1,x2,runtime,dx,outtime,graphics
nrows = int((x2-x1)/d
ncols = nrows
npnts = nrows + 2
dx = (x2-x1)/nrows
dt = 0.25*dx**2/D
nsteps = int(runtime/dt)
nper = int(outtime/dt)
if nper==0: nper = 1
x=[x1+((i-1)*(x2-x1))/nrows for i in range(npnts)]
dens = [[0.0]*npnts for i in range(npnts)]
densnext = [[0.0]*npnts for i in range(npnts)]
simtime = 0*dt
for i in range(1,npnts-1):
a = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
for j in range(1,npnts-1):
b = 1 - abs(1 - 4*abs((x[j]-(x1+x2)/2)/(x2-x1)))
dens[i][j] = a*b

print(simtime)
if graphics: plotdens(dens,x[0],x[-1],first=True)
lapl = [[0.0]*npnts for i in range(npnts)]

for s in range(nsteps):
for i in range(1,nrows+1):
for j in range(1,ncols+1):
lapl[i][j] = (dens[i+1][j]+dens[i-1][j]

+dens[i][j+1]+dens[i][j-1]
-4*dens[i][j])

for i in range(1,nrows+1):
for j in range(1,ncols+1):
densnext[i][j]=dens[i][j]+(D/dx**2)*dt*lapl[i][j]

dens, densnext = densnext, dens
simtime += dt
if (s+1)%nper == 0:
print(simtime)
if graphics: plotdens(dens,x[0],x[-1])

def plotdens(dens,x1,x2,first=False):
import os
import matplotlib.pyplot as plt
if first: plt.clf(); plt.ion()
plt.imshow(dens,interpolation='none',aspect='equal',
extent=(x1,x2,x1,x2),vmin=0.0,vmax=1.0,cmap='nipy_spectral')

if first: plt.colorbar()
plt.show();plt.pause(0.1)

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 11 / 68

http://www.scinethpc.ca

Then why do we bother with Python?

Fast development
Python lends itself easily to writing clear, concise code.
Python is very flexible: large set of very useful packages.
Easy of use → shorter development time

Performance hit depends on application
Python’s performance hit is most prominent on ‘tightly coupled’ calculation on fundamental data
types that are known to the CPU (integers, doubles), which is exactly the case for the 2d diffusion.
It does much less worse on file I/O, text comparisons, etc.
Hooks to compiled libraries to remove worst performance pitfalls.
Some Python packages compile computations on the fly.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 12 / 68

http://www.scinethpc.ca

2

2. Profiling Tools for Python

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 13 / 68

Wall-clock performance

Performance is about maximizing the utility of a resource.
This could be cpu processing power, memory, network, file I/O, etc.
We will focus on wall-clock performance here.

Time Profiling by function

To consider the computational performance of functions, but not of individual lines in your code,
there is the package called cProfile.

Time Profiling by line

To find cpu performance bottlenecks by line of code, there are packages like line_profiler and
scalene.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 14 / 68

http://www.scinethpc.ca

The cProfile Package
Use cProfile or profile to know in which functions your script spends its time.
You usually do this on a smaller but representative case.
The code should be reasonably modular, i.e., with separate functions for different tasks, for cProfile
to be useful.

Example
$ python -m cProfile -s cumulative diff2d.py
...

2492205 function calls in 521.392 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.028 0.028 521.392 521.392 diff2d.py:11(<module>)
1 515.923 515.923 521.364 521.364 diff2d.py:14(main)

2411800 5.429 0.000 5.429 0.000 {range}
80400 0.012 0.000 0.012 0.000 {abs}

1 0.000 0.000 0.000 0.000 diff2dplot.py:5(<module>)
1 0.000 0.000 0.000 0.000 diff2dparams.py:1(<module>)

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 15 / 68

http://www.scinethpc.ca

The line_profiler package

Use line_profiler to know, line-by-line, where your script spends its time.
You usually do this on a smaller but representative case.
First thing to do is to have your code in a function.
You also need to modify your script slightly:

▶ Decorate your function(s) with @profile
▶ Run your script on the command line with

$ kernprof -l -v SCRIPTNAME

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 16 / 68

http://www.scinethpc.ca

line_profiler script instrumentation

Script before:
x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

Script after:
#file: profileme.py
@profile
def profilewrapper():

x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

profilewrapper()

Run at the command line:
$ kernprof -l -v profileme.py

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 17 / 68

http://www.scinethpc.ca

Output of line_profiler
$ kernprof -l -v profileme.py

1.0
is a one

Wrote profile results to profileme.py.lprof
Timer unit: 1e-06 s

Total time: 0.018683 s
File: profileme.py
Function: profilewrapper at line 2

Line # Hits Time Per Hit % Time Line Contents
==

2 @profile
3 def profilewrapper():
4 1 7816.0 7816.0 41.8 x=[1.0]*(2048*2048)
5 1 43.0 43.0 0.2 a=str(x[0])
6 1 3.0 3.0 0.0 a+="\nis a one\n"
7 1 10783.0 10783.0 57.7 del x
8 1 38.0 38.0 0.2 print(a)

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 18 / 68

http://www.scinethpc.ca

The Scalene Package

Python Profiler for CPU, memory, and GPU
Fast
Accurate
Distinguishes Python from native (i.e. C) code and system calls.
No decorator required

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 19 / 68

http://www.scinethpc.ca

Scalene Usage
$ scalene diff2d.py

This should launch the result in a browser:

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 20 / 68

http://www.scinethpc.ca

Scalene Usage on the Command-Line
You can also tell scalene not to generate the HTML but to report the results to the command line instead,
as follows:
$ scalene --cli diff2d.py

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 21 / 68

http://www.scinethpc.ca

Handson #1
Reduce the ‘pixel size’ from dx=0.0125 to dx=0.15 in diff2dparams.py.

part 1 / 2

Run diff2d through scalene --cli
Identify the two or three most costly lines in the python code.

part 2 / 2

Try the same with line_profiler.
Are the same lines identified?

Note:

scalene measures the whole loop and attributes it to the loop body.
line_profiler loops at each line, but has more overhead.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 22 / 68

http://www.scinethpc.ca

3

3. Fast Arrays for Python

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 23 / 68

Lists aren’t the ideal data type

Python lists can do funny things that you don’t expect, if
you’re not careful.

Lists are just a collection of items, of any type.
If you do mathematical operations on a list, you won’t get
what you expect.
These are not the ideal data type for scientific computing.
Arrays are a much better choice, but are not a native
Python data type.

>>> a = [1,2,3,4]

>>> a
[1, 2, 3, 4]

>>> b = [3,5,5,6]

>>> b
[3, 5, 5, 6]

>>> 2*a
[1, 2, 3, 4, 1, 2, 3, 4]

>>> a+b
[1, 2, 3, 4, 3, 5, 5, 6]

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 24 / 68

http://www.scinethpc.ca

The NumPy Package
Almost everything that you want to
do starts with NumPy.
Contains arrays of various types and
forms: zeros, ones, linspace, etc.

>>> from numpy import zeros, ones

>>> zeros(5)
array([0., 0., 0., 0., 0.])

>>> ones(5, dtype=int)

array([1, 1, 1, 1, 1])

>>> zeros([2,2])

array([[0., 0.],
[0., 0.]])

>>> from numpy import arange

>>> arange(5)

array([0, 1, 2, 3, 4])

>>> from numpy import linspace

>>> linspace(1,5)

array([1. , 1.08163265, 1.16326531, 1.24489796, 1.32653061,
1.40816327, 1.48979592, 1.57142857, 1.65306122, 1.73469388,
1.81632653, 1.89795918, 1.97959184, 2.06122449, 2.14285714,
2.2244898 , 2.30612245, 2.3877551 , 2.46938776, 2.55102041,
2.63265306, 2.71428571, 2.79591837, 2.87755102, 2.95918367,
3.04081633, 3.12244898, 3.20408163, 3.28571429, 3.36734694,
3.44897959, 3.53061224, 3.6122449 , 3.69387755, 3.7755102 ,
3.85714286, 3.93877551, 4.02040816, 4.10204082, 4.18367347,
4.26530612, 4.34693878, 4.42857143, 4.51020408, 4.59183673,
4.67346939, 4.75510204, 4.83673469, 4.91836735, 5.])

>>> linspace(1,5,6)

array([1. , 1.8, 2.6, 3.4, 4.2, 5.])

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 25 / 68

http://www.scinethpc.ca

Element-wise arithmetic
vector-vector & vector-scalar multiplication

1-D arrays are often called ‘vectors’.
When vectors are multiplied with *, you get
element-by-element multiplication.
When vectors are multiplied by a scalar
(a 0-D array), you also get element-by-element
multiplication.
To get an inner product, use @.
(Or use the ‘dot’ method in Python < 3.5)

>>> import numpy as np

>>> a = np.arange(4)
>>> b = np.arange(3., 7.)
>>> c = 2

>>> a, b, c

(array([0, 1, 2, 3]), array([3., 4., 5., 6.]), 2)

>>> a * b
array([0., 4., 10., 18.])

>>> a * c
array([0, 2, 4, 6])

>>> b * c
array([6., 8., 10., 12.])

>>> a @ b
32.0

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 26 / 68

http://www.scinethpc.ca

Matrix-vector multiplication
A 2-D array is sometimes called a ‘matrix’.

Matrix-scalar multiplication with * gives
element-by-element multiplication.
Matrix-vector multiplication with * give a
kind-of element-by-element multiplication
For a linear-algebra-type matrix-vector
multiplication, use @.
(Or use the ‘dot’ method in Python < 3.5)

>>> import numpy as np

>>> a = np.array([[1,2,3], [2,3,4]])

>>> b = np.arange(1,4); b

array([1, 2, 3])

>>> a * b
array([[1, 4, 9],

[2, 6, 12]])

>>> a @ b
array([14, 20])[

a11 a12 a13
a21 a22 a23

]
∗

[
b1
b2
b3

]
=

[
a11 ∗ b1 a12 ∗ b2 a13 ∗ b3
a21 ∗ b1 a22 ∗ b2 a23 ∗ b3

]
[

a11 a12 a13
a21 a22 a23

]
@

[
b1
b2
b3

]
=

[
a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3
a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3

]
Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 27 / 68

http://www.scinethpc.ca

Matrix-matrix multiplication
Not surprisingly, matrix-matrix multiplication is also element-wise unless performed with @.
>>> import numpy as np

>>> a = np.array([[1,2], [4,3]]) ; a

array([[1, 2],
[4, 3]])

>>> b = np.array([[1,2], [4,3]]) ; b

array([[1, 2],
[4, 3]])

>>> a * b
array([[1, 4],

[16, 9]])

[
a11 a12
a21 a22

]
∗

[
b11 b12
b21 b22

]
=

[
a11 ∗ b11 a12 ∗ b12
a21 ∗ b21 a22 ∗ b22

]
>>> a @ b
array([[9, 8],

[16, 17]])[
a11 a12
a21 a22

]
@

[
b11 b12
b21 b22

]
=

[
a11 ∗ b11 + a12 ∗ b21 a11 ∗ b12 + a12 ∗ b22
a21 ∗ b11 + a22 ∗ b21 a21 ∗ b12 + a22 ∗ b22

]
Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 28 / 68

http://www.scinethpc.ca

Does changing to NumPy arrays help?
Let’s return to our 2D diffusion example.
Note: Restore the original diff2dparam.py!

Pure Python implementation:
$ time python diff2d.py > output_p.txt

Elapsed: 171.35 seconds

NumPy implementation:
$ time python diff2d_slow_numpy.py > output_psn.txt

Elapsed: 823.78 seconds

Hmm, not really.
Really not!

So what gives?
Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 29 / 68

http://www.scinethpc.ca

Let’s inspect the code
#diff2d_slow_numpy.py
from diff2dplot import plotdens
from diff2dparams import D,x1,x2,runtime,dx,outtime,graphics
import numpy as np
nrows = int((x2-x1)/d
ncols = nrows
npnts = nrows + 2
dx = (x2-x1)/nrows
dt = 0.25*dx**2/D
nsteps = int(runtime/dt)
nper = int(outtime/dt)
if nper==0: nper = 1
x = np.linspace(x1-dx,x2+dx,num=npnts)
dens = np.zeros((npnts,npnts))
densnext = np.zeros((npnts,npnts))
simtime = 0*dt
for i in range(1,npnts-1):
a = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
for j in range(1,npnts-1):
b = 1 - abs(1 - 4*abs((x[j]-(x1+x2)/2)/(x2-x1)))
dens[i][j] = a*b

print(simtime)
if graphics: plotdens(dens,x[0],x[-1],first=True)

Look at all those loops and indices!

Look at all those loops and indices!
lapl = np.zeros((npnts,npnts))
for s in range(nsteps):
for i in range(1,nrows+1):
for j in range(1,ncols+1):
lapl[i][j] = (dens[i+1][j]+dens[i-1][j]

+dens[i][j+1]+dens[i][j-1]
-4*dens[i][j])

for i in range(1,nrows+1):
for j in range(1,ncols+1):
densnext[i][j]=dens[i][j]+(D/dx**2)*dt*lapl[i][j]

dens, densnext = densnext, dens
simtime += dt
if (s+1)%nper == 0:
print(simtime)
if graphics: plotdens(dens,x[0],x[-1])

“Why does that matter?” you ask?
Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 30 / 68

http://www.scinethpc.ca

Python overhead

Python’s overhead comes mainly from its interpreted and dynamic nature.
The diff2d_slow_numpy.py code uses NumPy arrays, but still has loops over indices.
In each iteration, Python code has to be interpreted and integer manipulations have to be performed,
regardless of whether you’re using NumPy arrays.
NumPy will not give much speedup until you use its element-wise ‘vectorized’ operations.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 31 / 68

http://www.scinethpc.ca

How to write vectorized Python code
This is easiest explained by example:

Instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in range(100):

c[i] = a[i] + b[i]

You would write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in range(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Vectorization results in
shorter Python code
less repeatedly interpreted lines
calls to C or Fortran functions by NumPy.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 32 / 68

http://www.scinethpc.ca

Does changing to NumPy really help?

Diffusion example:
Pure Python implementation:
$ time python diff2d.py > output_p.txt

Elapsed: 171.35 seconds

NumPy vectorized implementation:
$ time python diff2d_numpy.py > output_n.txt

Elapsed: 4.37 seconds

Yeah! 40× speed-up

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 33 / 68

http://www.scinethpc.ca

Reality check: NumPy vs. compiled code

NumPy, vectorized implementation:
$ time python diff2d_numpy.py > output_n.txt

Elapsed: 4.37 seconds

Compiled versions:
$ time ./diff2d_cpp.ex > output_c.txt

Elapsed: 0.98 seconds

$ time ./diff2d_f90.ex > output_f.txt

Elapsed: 0.83 seconds

Typically, Python+NumPy is still 5 × slower than compiled.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 34 / 68

http://www.scinethpc.ca

What about Cython?

Cython is a compiler for Python code.
Almost all Python is valid Cython.
Typically used for packages, to be used in regular Python scripts.

Let’s look at the timing first:
$ make -f Makefile_cython
...
python diff2dnumpylibsetup.py build_ext --inplace

$ time python diff2d_numpy.py > output_n.txt

Elapsed: 4.37 seconds

$ time python diff2d_numpy_cython.py > output_nc.txt

Elapsed: 4.94 seconds

Not faster?!

Because it’s still Python!
The compilation preserves the pythonic nature
of the language, i.e, garbage collection, range
checking, reference counting, etc, are still
done: no performance enhancement.

If you want to get around that, you need to
use Cython specific extensions
that use C types.
That would be a whole session in and of itself.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 35 / 68

http://www.scinethpc.ca

4

4. Parallel computing in Python

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 36 / 68

Parallel Python
We will look at a number of approaches to parallel programming with Python:

Package Functionality
numexpr threaded parallelization of certain numpy expressions
numba just-in-time compiler for Python functions
multiprocessing create processes that behave more like threads
mpi4py message passing between processes
dask task-based parallelism
ray and dask task-based parallelism

Unavailable approaches

Threads in Python: these are like pthreads, but even worse: they do not run simultaneously because
of the Global Interpreted Lock.
Note: Experimentally, the GIL can be switched off in Python 3.13, but very few python packages
support this out-of-the-box yet.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 37 / 68

http://www.scinethpc.ca

Note about using GPUs in Python

There are roughly two ways that make this possible:

1 By using packages that allow you to write CUDA-like kernels.
We won’t have time to cover that here, but check out Numba.

2 Using a formalism that uses GPUs in its implementation, e.g. Tensorflow.
If a package supports this, great, use it, but it doesn’t change how you use it.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 38 / 68

http://www.scinethpc.ca

The Numexpr Package

The numexpr package is useful if you’re doing array algebra:
It is essentially a just-in-time compiler for NumPy.
It takes matrix expressions, breaks things up into threads, and does the calculation in parallel.
Somewhat awkwardly, it takes its input in as a string.
In some situations using numexpr can significantly speed up your calculations.
This is the closest thing to “OpenMP-ing a loop” in Python.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 39 / 68

http://www.scinethpc.ca

Numexpr in a nutshell

Give it an array arithmetic expression, and it will compile and run it, and return or store the output.
Supported operators:
+ - * / % << >> < <= == != >= > & | ~ **

Supported functions:
where, sin, cos, tan, arcsin, arccos arctan, arctan2, sinh, cosh, tanh, arcsinh, arccosh
arctanh, log, log10, log1p, exp, expm1, sqrt, abs, conj, real, imag, complex, contains

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 40 / 68

http://www.scinethpc.ca

Using the numexpr package
>>> from time import time
>>> import numpy as np
>>> a = np.random.rand(300000000)
>>> b = np.random.rand(300000000)
>>> c = np.zeros(300000000)

Without numexpr:
>>> t = time()
>>> c = a**2 + b**2 + 2*a*b
>>> print("Elapsed: %f seconds" % (time()-t))

Elapsed: 3.113633 seconds

With numexpr:
>>> import numexpr as ne
>>> ne.set_num_threads(1);
>>> t = time()
>>> c = ne.evaluate('a**2 + b**2 + 2*a*b');
>>> print("Elapsed: %f seconds" % (time()-t))

Elapsed: 1.917011 seconds

>>> ne.set_num_threads(2);
>>> t = time();
>>> c = ne.evaluate('a**2 + b**2 + 2*a*b');
>>> print("Elapsed: %f seconds" % (time()-t))

Elapsed: 0.964337 seconds

>>> ne.set_num_threads(4);
>>> t = time();
>>> c = ne.evaluate('a**2 + b**2 + 2*a*b');
>>> print("Elapsed: %f seconds" % (time()-t))

Elapsed: 0.590027 seconds

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 41 / 68

http://www.scinethpc.ca

Numexpr for diff2d

Annoyingly, numexpr has no facilities for slicing or offsets, etc.
This is troubling for our diffusion code, in which we have to do something like:

laplacian[1:nrows+1,1:ncols+1] = (dens[2:nrows+2,1:ncols+1] +
dens[0:nrows+0,1:ncols+1] +
dens[1:nrows+1,2:ncols+2] +
dens[1:nrows+1,0:ncols+0] -
4*dens[1:nrows+1,1:ncols+1])

We would need to make a copy of dens[2:nrows+2,1:ncols+1] etc. into a new NumPy array
before we can use numexpr, but copies are expensive.
We want numexpr to use the same data as in dens, but viewed differently.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 42 / 68

http://www.scinethpc.ca

Numexpr for diff2d (continued)

We want numexpr to use the same data as in dens, but viewed differently.
That is tricky, and requires knowledge of the data’s memory structure.
diff2d_numexpr.py shows one possible solution.

$ time python diff2d_numpy.py > output_n.txt

Elapsed: 4.37 seconds

$ export NUMEXPR_NUM_THREADS=4
time python diff2d_numexpr.py > diff2d_numexpr.out

Elapsed: 2.25 seconds

Nice, 2x speed up.
(You may get better eve speed-up if you increase the grid, i.e., decrease dx).

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 43 / 68

http://www.scinethpc.ca

Numexpr for diff2d (continued more)

To get the diffusion algorithm in a form that has no slices or offsets, we need to linearize the 2d arrays
into 1d arrays, but in a way that avoids copying the data.
This is how this is achieved in diff2d_numexpr:
dens = dens.ravel()
densnext = densnext.ravel()
densL = dens[npnts-1:-npnts-1] # same data one cell left
densR = dens[npnts+1:-npnts+1] # same data one cell right
densU = dens[0:-2*npnts] # same data one cell up
densD = dens[2*npnts:] # same data one cell down
densC = dens[npnts:-npnts]
ne.evaluate('densC + (D/dx**2)*dt*(densL+densR+densU+densD-4*densC)',

out=densnext[npnts:-npnts])
dens = dens.reshape((npnts,npnts))
densnext = densnext.reshape((npnts,npnts))

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 44 / 68

http://www.scinethpc.ca

The Numba Package

Numba allows compilation of selected portions of Python code to native code.
Decorator based: compile a function.
It can use multi-dimensional arrays and slices, like NumPy.
Very convenient.
Numba can use GPUs, but you’re programming them like CUDA kernels (i.e., not like OpenMP).
While it can also vectorize for multi-core and GPUs with, it can only do so for specific, independent,
non-sliced data.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 45 / 68

http://www.scinethpc.ca

Numba for the Diffusion Equation
For the diffusion code, we change the time step to a function with a decorator:
Before:
Take one step to produce new density.
laplacian[1:nrows+1,1:ncols+1]=dens[2:nrows+2,1:ncols+1]+dens[0:nrows+0,1:ncols+1]+dens[1:nrows+1,2:ncols+2]+dens[1:nrows+1,0:ncols+0]-4*dens[1:nrows+1,1:ncols+1]
densnext[:,:] = dens + (D/dx**2)*dt*laplacian

$ time python diff2d_numpy.py >output_n.txt

Elapsed: 4.37 seconds

After:
from numba import jit
@jit(nopython=True)
def timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt):

laplacian[1:nrows+1,1:ncols+1]=dens[2:nrows+2,1:ncols+1]+dens[0:nrows+0,1:ncols+1]+dens[1:nrows+1,2:ncols+2]+dens[1:nrows+1,0:ncols+0]-4*dens[1:nrows+1,1:ncols+1]
densnext[:,:] = dens + (D/dx**2)*dt*laplacian

...
timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt)

$ time python diff2d_numba.py >output_nb.txt

Elapsed: 10.17 seconds
Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 46 / 68

http://www.scinethpc.ca

Why the limited performance of Numba here?

Numba can compile more complicated code than e.g. numexpr, but this compilation takes some time.
We already optimized the Python code by using vectorized operations.
So the same numpy routines are called!
For codes that aren’t so easily vectorized, e.g. with complex indexed array operations,
Numba can help a lot with very little code changes.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 47 / 68

http://www.scinethpc.ca

Numba for the Diffusion Equation, 2nd Try

@jit(nopython=True)
def timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt):

for i in range(1,nrows+1):
for j in range(1,ncols+1):

laplacian[i][j] = dens[i+1][j]+dens[i-1][j]+dens[i][j+1]+dens[i][j-1]
for i in range(1,nrows+1):

for j in range(1,ncols+1):
densnext[i][j] = dens[i][j]+(D/dx**2)*dt*laplacian[i][j]

$ time python diff2d_numba_loop.py >diff2d_numba_loop.out

Elapsed: 2.29 seconds

That’s better!

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 48 / 68

http://www.scinethpc.ca

Numba for the Diffusion Equation, Parallel
We can ask numba to use multiple cores too.
It can do work-sharing of loops, much in the same way as OpenMP, if you use prange instead of range.
from numba import prange
@jit(nopython=True,parallel=True)
def timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt):

for i in prange(1,nrows+1):
for j in range(1,ncols+1):

laplacian[i][j] = dens[i+1][j]+dens[i-1][j]+dens[i][j+1]+dens[i][j-1]
for i in prange(1,nrows+1):

for j in range(1,ncols+1):
densnext[i][j] = dens[i][j]+(D/dx**2)*dt*laplacian[i][j]

time python diff2d_numba_par_loop.py >diff2d_numba_par_loop.out

Elapsed: 1.77 seconds

Even (somewhat) better!
Note: You may need to increase the resolution to see the effect.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 49 / 68

http://www.scinethpc.ca

The MPI4PY Package

MPI
The previous parallel techniques used processors on one node
Using more than one node requires these nodes to communicate
MPI is one way of doing that communication
MPI is a C/Fortran Library API

Mpi4py features
mpi4py is a Python wrapper around the MPI library
Point-to-point communication (sends, receives)
Collective (broadcasts, scatters, gathers) communications of any picklable Python object
Names of functions much the same as in C/Fortran, but are methods of the communicator

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 50 / 68

http://www.scinethpc.ca

Mpi4py in a nutshell

MPI communication is govered by a
communicator:
from mpi4py import MPI # does MPI_Init!
comm = MPI.COMM_WORLD

Every process runs the same code, the full
Python script, at the same time.
Every process has a rank, which is the only
feature that distinguishes it from its siblings.
rank = comm.Get_rank()

Processes can send values to other ranks:
comm.send(variable, dest=torank)

Processes can receive things from other ranks:
variable = comm.recv(source=fromrank)

Sends and receives must match or your
program will hang. The combined
comm.sendrecv can help avoid this deadlock.
Processes can do collective actions, like
summing up values:
result = comm.reduce(value2sum,

op=MPI.SUM, root=0)

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 51 / 68

http://www.scinethpc.ca

Mpi4py
One of the drudgeries of MPI is to have to express the binary layout of your data.
This arises because C and Fortran don’t have introspection and the MPI libraries cannot look inside
your code.
With Python, this is different: we can investigate, within Python, what the structure is.
That means we can send a piece of data without having to specify types and amounts.

mpi4py_right_rank.py
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
right = (rank+1)%size
left = (rank+size-1)%size

rankr = comm.sendrecv(rank, left, source=right)

print("I am rank", rank,
"; my right neighbour is", rankr)

$ mpirun -np 1 python mpi4py_right_rank.py

I am rank 0 ; my right neighbour is 0

$ mpirun -n 4 python mpi4py_right_rank.py

I am rank 0 ; my right neighbour is 1
I am rank 1 ; my right neighbour is 2
I am rank 3 ; my right neighbour is 0
I am rank 2 ; my right neighbour is 3

MPI deserves it own workshop, but just know it works in Python too.Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 52 / 68

http://www.scinethpc.ca

It’s still slower than C/Fortran!
But there is hope:

When throughput matters more
If you have a reasonable efficient serial Python code (using NumPy vectorization, etc.), and you
have many independent cases to compute.
Use multiprocessing, or ray, or do it in bash with GNU Parallel O. Tange (2018): GNU Parallel
2018, March 2018, https://doi.org/10.5281/zenodo.1146014.

When doing (big) data analysis
For reading in data, performing some analysis, and writing it out, performance is likely limited by I/O.
E.g. pyspark.

When using optimized packages
Many Python packages are written in C or Fortran, and just expose an interface to Python.
Examples of this include popular data science and machine learning packages:
pandas scipy sklearn tensorflow keras dask ray

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 53 / 68

http://www.scinethpc.ca

The Multiprocessing Package

Multiprocessing spawns separate processes that
run concurrently and have their own memory.
The Process function launches a separate
process.
The syntax is very similar to spawning threads.
This is intentional.
The details under the hood depend strongly
upon the system involved (Windows, Mac,
Linux), but are hidden, so your code can be
portable.

multiprocessingexample.py
import multiprocessing

def f(x):
return x*x

processes = []

for x in range(1,50):
p = multiprocessing.Process(target=f,args=(x,))
processes.append(p)
p.start()

for p in processes:
p.join()

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 54 / 68

http://www.scinethpc.ca

Work sharing with multiprocessing

The Pool object from multiprocessing offers a convenient means of parallelizing the execution of a
function across multiple input values, distributing the input data across processes (data parallelism).
from multiprocessing import Pool, cpu_count

def f(x):
return x*x

numprocs = cpu_count()

with Pool(numprocs) as p:
print(p.map(f, range(1,50)))

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 55 / 68

http://www.scinethpc.ca

Shared memory with multiprocessing
multiprocessing allows one to seamlessly
share memory between processes. This is done
using ‘Value’ and ‘Array’.
Value is a wrapper around a strongly typed
object called a ctype. When creating a Value,
the first argument is the variable type, the
second is that value.
Code on the right has 10 processes add 50
increments of 1 to the Value v.

multiprocessing_shared.py
from multiprocessing import Process
from multiprocessing import Value
def myfun(v):

for i in range(50):
time.sleep(0.001)
v.value += 1

v = Value('i', 0);
procs = []
for i in range(10):

p = Process(target=myfun, args=(v,))
procs.append(p)
p.start()

for proc in procs: proc.join()
print(v.value)

$ time python multiprocessing_shared.py

485
Elapsed: 0.20 seconds

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 56 / 68

http://www.scinethpc.ca

Race conditions

What went wrong?
Race conditions occur when program instructions are executed in an order not intended by the
programmer. The most common cause is when multiple processes are given access to a resource.
In the example here, we’ve modified a location in memory that is being accessed by multiple
processes.
Note that it need not only be processes or threads that can modify a resource, anything can modify a
resource, hardware or software.
Bugs caused by race conditions are extremely hard to find.

Be very very careful when sharing resources between multiple processes or threads!

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 57 / 68

http://www.scinethpc.ca

Using shared memory, continued

The solution: be more explicit in your locking.

multiprocessing_shared_fixed.py
from multiprocessing import Process
from multiprocessing import Value
from multiprocessing import Lock

def myfun(v, lock):
for i in range(50):

time.sleep(0.001)
with lock:

v.value += 1

multiprocessing_shared_fixed.py
continued
v = Value('i', 0)
lock = Lock()
procs = []
for i in range(10):
p = Process(target=myfun,

args=(v,lock))
procs.append(p)
p.start()

for proc in procs: proc.join()
print(v.value)

$ time python multiprocessing_shared_fixed.py

500
Elapsed: 0.12 seconds

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 58 / 68

http://www.scinethpc.ca

Task-based approaches

We saw with multiprocessing that if the individual tasks are light, it is hard to get good parallel
performance.
Those worked well with data-parallel approaches like numpy and numexpr.
Let’s consider the case that the tasks are more compute intensive.
But let’s be a bit more general, and allow dependencies between tasks.
To do task-based parallelizing, how would we describe these dependencies?

We need a way to declare a dependency graph of tasks, and then a way to execute it with multiple workers.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 59 / 68

http://www.scinethpc.ca

The Dask Package
An original algorithm may already show the dependencies.
If we replaced the variables in all the steps of an algorithm with placeholders, we could figure out
what could be done in parallel before compute the final result.
dask.delayed

Example

Immediate, non parallelized:
def add(x,y):

return x+y

x = add(1,2)
y = add(2,3)

z = add(x,y)

print("z is",z)

Task-graph, executed in parallel:
import dask

def add(x,y):
return x+y

x = dask.delayed(add)(1,2)
y = dask.delayed(add)(2,3)

z = dask.delayed(add)(x,y)

print("z is",z.compute())

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 60 / 68

http://www.scinethpc.ca

Dask, continued

import dask

def add(x,y):
return x+y

x = dask.delayed(add)(1,2)
y = dask.delayed(add)(2,3)

z = dask.delayed(add)(x,y)

print("z is",z.compute())

z is 8

x is not a number, but a ‘Delayed’ object
This just defines what should be done, with
arguments that become dependencies
dask build the dependency tree.
It does not execute until you use the compute
method.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 61 / 68

http://www.scinethpc.ca

Main features of dask

Parallel computing
Providing data structures that are extensions of familiar object: DataFrames, Array, and Bag
Task scheduling on-node (e.g. using multiprocessing) or distributed
Scalable
Dynamics Task Graphs
Diagnostic Tools
Works well with numpy, scipy, scikit-learn, etc.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 62 / 68

http://www.scinethpc.ca

The Ray Package

Ray is another ‘task graph’ approach to parallelism.
Where dask is aimed at data structures, ray is more general
It allows e.g. stateful actors and runtime added tasks.
It is reportedly optimized for low latency.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 63 / 68

http://www.scinethpc.ca

Ray Example

ray basics example
import ray

ray.init()

@ray.remote
def add(x,y):

return x+y

x = add.remote(1,2)
y = add.remote(2,3)

z = add.remote(x,y)

print("z is",ray.get(z))

ray.shutdown()

z is 8

You need to explicitly start and stop the ‘ray
cluster’.
Ray works with decorators.
The ‘delayed’ actions are done using
.remote(...)

To get the result, you do ray.get(...)

This does not really show a difference with dask.
The level of detailed control you need and the
presence of specialized functionality, e.g. machine
learning for Ray, data manipulation like with numpy
or pandas for Dask.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 64 / 68

http://www.scinethpc.ca

5

5. Conclusions

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 65 / 68

Conclusions
Performance

Getting performance out of Python involves getting out of Python
Find your performance with scalene or line_profiler before optimizing.
Numpy, when used with vectorized expressions helps.
Then numexpr can help even more.
Numba, when not used with vectorized expressions helps.

Parallel computing
Numexpr for the simplest cases
Numba for more complex cases (incl. GPUs)
For non-lightweight tasks, multiprocessing.
mpi4py is an option, but not easy with task dependencies.
Dask or Ray for workflows with dependencies (dask for data analysis and ray for machine learning)

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 66 / 68

http://www.scinethpc.ca

6

Assignment

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 67 / 68

Assignment (to complete the course)
Consider the Python code auc_serial.py for computing the area under the curve
This code can be run with python auc_serial 100000000 (100,000,000 is the number of points it will
use).

Profile the auc_serial.py code

Add @profile to the main function.
Run this through the line profiler and see what line(s) cause the most cpu usage.
Submit the (text) output of the line profiler.

Speed up the python code

Use either numpy, numexpr, or numba.
Submit the improved python code.

The deadline is Tue April 29, 2025 at midnight.
Use the forum is you have questions about the assignment.

Ramses van Zon Python Programming for HPC (HPC111) April 22, 2025 68 / 68

http://www.scinethpc.ca

	1. Performance and Python
	2. Profiling Tools for Python
	3. Fast Arrays for Python
	4. Parallel computing in Python
	5. Conclusions
	Assignment

