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Communication patterns in MPI

® No communication between processes
MPI_Init, MPI_Comm_size, MPI_Comm_rank, MPI_Finalize

© Point-to-point
MPI_Ssend, MPI_Recv, MPI_Sendrecv

©® Broadcast
Send same data from one rank to all others

© Reduction
Combine results from all ranks (e.g. sum)

© Scatter

Send different data from one rank to all others
O Gather

Collect data from one rank to all others
@ All-to-all

Everyone sends something to everyone
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Recap: Send/Recv code

// fifthmessage.cpp
#include <iostream>
#include <string>
#include <mpi.h>
int main() {
int rank, size, left, right;
double msgsent, msgrcvd;
MPI_Init(nullptr, nullptr);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
left = rank-1;
if (left < 0) left = size-1;
right = rank+1;
if (right >= size) right = 0;
msgsent = rank*rank;
msgrcvd = -999.;
MPI_Sendrecv(&msgsent, 1, MPI_DOUBLE, right, 749,
&msgrcvd, 1, MPI_DOUBLE, left, 749,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
std::cout << std::to_string(rank) + ": Sent " + std::to_string(msgsent)
+ " and got " + std::to_string(msgrcvd) + "\n";
MPI_Finalize();
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By the way, about that string concatenation

To print a line of text from each process, the code does not have

std::cout << rank << ": Sent " << msgsent << " and got " << msgrcvd << "\n";

but instead uses string conversion and concatenation before streaming to the terminal

std::cout << std::to_string(rank) + ": Sent " + std::to_string(msgsent)
+ " and got " + std::to_string(msgrcvd) + "\n'";

There's a good reason:
e In the first case, each “<< SOMETHING" is a request for output to the terminal.
e The requests are handled in (essentially) random order.

e This means the parts of the output lines are likely interleaved, and the lines don’t make any sense.

By concatenating everything on the same line to a string,
each process has just one request to write a single line.

While these can still be processed in any order, the lines stay intact.

Bonus: this will help in parallelization of output. :
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3. MPI Broadcast
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Broadcast

This involves one process sending data to all others.

#include <mpi.h> $ mpicxx -o bcastex bcastex.cpp
#include <string> $ mpirun -n 3 ./bcastex
#include <iostream> What is your name? Ramses
int main() { Rank O knows Ramses

int rank, size, iorank = 0; Rank 1 knows Ramses

std::string name; Rank 2 knows Ramses

MPI_Init(nullptr, nullptr);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == iorank) {
std::cout << "What is your name? ";
std::cin >> name;
size = name.size();
¥
MPI_Bcast(&size, 1, MPI_INT,
iorank, MPI_COMM_WORLD) ;
name.resize(size);
MPI_Bcast (&name[0], size, MPI_CHAR,
iorank, MPI_COMM_WORLD) ;
std::cout << "Rank " + std::to_string(rank)
+ " knows " + name + "\n";
MPI_Finalize();
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4. MPI Reductions
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Reductions: Min, Mean, Max Example

e Calculate the min/mean/max of random
numbers -1.0 ... 1.0 .
e Should trend to -1/0/+1 for a large N.
(min,mean,max);
e How to MPI it? /
e Partial results on each node, collect all to . (min,mean,max)o

node 0.

(min,mean,max)2
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Reductions: Min, Mean, Max Example (1/2)

// Computes the min,mean&max of random numbers uniform(-1.0,1.0);
#include <mpi.h> std::minstd_rand engine(14);
#include <iostream> // each process skip ahead to start
#include <algorithm> std: :engine.discard(nxstart);
#include <random> // compute local data
#include <rarray> for (long i=0;i<nxown;i++)
int main() dat[i] = uniform(engine);
{ const long MIN=0, SUM=1, MAX=2;
const long nx = 200'000'000; rvector<double> mmm(3);
// find this process place mmm = le+19, 0, -1le+19;
int rank; for (long i=0;i<nxown;i++) {
int size; mmm [MIN] = min(dat([i], mmm[MIN]);
MPI_Init(nullptr, nullptr); mmm [MAX] = max(dat[i], mmm[MAX]);
MPI_Comm_size(MPI_COMM_WORLD, &size); mmm [SUM] += dat[i];
MPI_Comm_rank (MPI_COMM_WORLD, &rank); ¥
// determine its subrange of data // send results to a collecting rank
const long nxper=(nx+size-1)/size; const long collectorrank = O0;
const long nxstart=nxper*rank; if (rank != collectorrank)
const long nxown=(rank<size-1)?nxper MPI_Ssend(mmm.data(), 3,MPI_DOUBLE,
: (nx-nxper*(size-1)); collectorrank, 749,
rvector<double> dat(nxown) ; MPI_COMM_WORLD) ;
std::uniform_real_distribution<double> else { :
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Reductions: Min, Mean, Max Example (1/2)

rvector<double> recvmmm(3);
for (long i = 1; i < size; i++) {
MPI_Recv(recvmmm.data(), 3,
MPI_DOUBLE,
MPI_ANY_SOURCE, 749,
MPI_COMM_WORLD,
MPI_STATUS_IGNORE) ;
mmm [MIN] = min(recvmmm[MIN],

mmm [MIN]) ;
mmm [MAX] = max(recvmmm[MAX],
mmm [MAX]) ;
mmm [SUM] += recvmmm[SUM] ;
}
// output

std::cout << "Global Min/mean/max "
<< mmm[MIN] << " "
<< mmm[SUM]/nx <<" "
<< mmm[MAX] << "\n";
}
MPI_Finalize();
I
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Efficiency?

CPUI1 CPU2 CPU3 CPU4

® Requires (P-1) messages . ' ' .

e 2(P-1) if everyone then needs to get the sum S S sum
answer. 1

Sum

I eermomn = 17 Ccomm Sum
sSum

Sum
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Better Summing

e Pairs of processors; send partial sums CPU1 CPU2 CPU3 CPU4
e Max messages received log, (P) . . . .
e Can repeat to send total back. sum sum sum sum
- \f |
. Sum
Tcomm =2 logz(P)Ccomm Suri
total

Reduction: Works for a variety of operations (+,*,min,max)
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MPI Collectives

[
S 71
i -

MPI_Allreduce(sendptr, rcvptr, count, MPI_TYPE, MPI_Op, Communicator);

MPI_Reduce(sendbuf, recvbuf, count, MPI_TYPE, MPI_Op, root, Communicator);
TP EERR s PR

sendptr/rcvptr: pointers to buffers

e count: number of elements in ptrs

e MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT, MPI_CHAR, etc.

MPI_Op: one of MPI_SUM, MPI_PROD, MPI_MIN, MPI_MAX.
e Communicator: MPI_COMM_WORLD or user created.

The “A11" variant sends result back to all processes; non-A11 sends to process root.
¥ "-*I_l: 3 i lI
™ o . # &

= *
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Reductions: Min, Mean, Max with MPI Collectives

rvector<double> globalmmm(3) ;

MPI_Allreduce (&mmm[MIN], &globalmmm[MIN], 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD) ;
MPI_Allreduce (&mmm[MAX], &globalmmm[MAX], 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD) ;
MPI_Allreduce (&mmm[SUM], &globalmmm[SUM], 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) ;

if (rank==0)
std::cout << "Global Min/mean/max
<< mmm[MIN] << " "
<< mmm[SUM] /nx << " "
<< mmm[MAX] << endl;

"
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More Collective 7 ii-ations
Collective e
# Reductions are an example of a collective operation.
® As opposed to the pairwise messages we've seen before

» All processes in the communicator must participate.

Cannot proceed until all have participated.

® Don't necessarity know what's “under the hood".
t Bhios ' F Mo g
Other MPI Collectives
5. Scatter 6. Gather

MPI_Scatter MPI_Gather

Q== @n @ @10 (@)

OLNOINOLRO -
lamses van Zon Distributed Parallel Progfamming with MPI - part 2

© Even more:
e All-to-all ...
e File 1/0

» Barriers (avoid!)

PHY1610 Winter 2025

16 /26



MPI| Domain decomposition
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Solving the diffusion equation with MPI

Consider a diffusion equation with an explicit finite-difference, time-marching method.

Imagine the problem is too large to fit in the memory of one node, so we need to do domain
decomposition, and use MPI.
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Discretizing Derivatives

e Partial Differential Equations like the T Ty —2T; + T,

diffusion equation o9x2 A2

_0/0/0]

are usually numerically solved by finite
differencing the discretized values.

e Implicitly or explicitly involves interpolating . . .
data and taking the derivative of the

interpolant.

e Larger “stencils” — More accuracy.
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Diffusion equation in higher dimensions
Spatial grid separation: Ax. Time step At.

Grid indices: 1, j. Time step index: (n)
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Stencils and Boundaries
o How do you deal with 1D

ot THEEEET
1 2 3 4 5 6

e The stencil juts out, you !

need info on cells beyond e Number of guard cells
those you're updating. ng=1

e Loop from
e Common solution: it =ng.N — 2n,.
Guard cells:

» Pad domain with these
guard celss so that
stencil works even for
the first point in domain.

» Fill guard cells with
values such that the
required boundary

conditions are met. ;
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Domain decomposition

e A very common approach to
parallelizing on distributed
memory computers.

e Subdivide the domain into
contiguous subdomains.

e Give each subdomain to a
different MPI process.

e No process contains the full
datal

e Maintains locality.

® Need mostly local data, ie.,
only data at the boundary
of each subdomain will
need to be sent between
processes.
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Guard cell exchange

e In the domain decomposition, the stencils .....
will jut out into a neighbouring subdomain.
e Much like the boundary condition.

e One uses guard cells for domain
decomposition too.
e Could use even/odd trick, or sendrecv.
e |f we managed to fill the guard cell with
values from neighbouring domains, we can
treat each coupled subdomain as an isolated
domain with changing boundary conditions.
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1D diffusion with MPI

Before MPI

a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)
newT[i] = T[i] + ax(T[i+1]+T[i-1]1-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[i];

Note:

e the for-loop over i could also have been a
call to dgemv for a submatrix.

e the for-loop over i could also easily be
parallelized with OpenMP

s . RamsesvamZppst ~  p a2~ ;1\ Distributed Parallel Programming with MPI - part 2

After MPI

MPI_Init(&argc,&argv) ;

MPI_Comm_rank (MPI_COMM_WORLD,&rank) ;
MPI_Comm_size (MPI_COMM_WORLD,&size) ;

left = rank-1; if(left<0)left=MPI_PROC_NULL;
right = rank+1l; if(right>=size)right=MPI_PROC_NULL;
localn = n/size;

a = 0.25%dt/pow(dx,2);

guardleft = 0;

guardright = localn+1;

for (int t=0;t<maxt;t++) {

MPI_Sendrecv(&T[1], 1,MPI_DOUBLE,left, 11,
&T[guardright] ,1,MPI_DOUBLE,right,11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE) ;

MPI_Sendrecv(&T[nlocall, 1,MPI_DOUBLE,right,11,
&T[guardleft], 1,MPI_DOUBLE,left, 11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

if (rank==0) T[guardleft] = 0.0;

if (rank==size-1) T[guardright] = 0.0;

for (int i=1; i<=localn; i++)

newT[i] = T[i] + ax(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[i];
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2D diffusion with MPI

How to divide the work in 2d?

® Less communication (18 edges).

e Harder to program, non-contiguous data to
send, left, right, up and down.

e Easier to code, similar to 1d, but with
contiguous guard cells to send up and down.

® More communication (30 edges).
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Let's look at the easiest domain decomposition.

...S.erﬂ... Parallel (P = 3):
EEEEEEER
THEEEENT
TEEEEEET
=------= ENEEEEEE
=llllll= EEEEEEEN
EEEEEEER
EEEEEEEE - 0
HEEEEEER
Communication pattern:
HEEEEEEER

Copy upper stripe to upper neighbour bottom guard cell. N [ [ [ | B

Copy lower stripe to lower neighbout top guard cell.

L]
- Gy _ B N
e Contiguous cells: can use count in MPI_Sendrecv. ........
.

Similar to 1d diffusion.
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