Distributed Parallel Programming with MPI - part 2

Ramses van Zon

PHY1610 Winter 2025

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 1/26

Communication patterns in MPI

Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025

2/26

Communication patterns in MPI

® No communication between processes
MPI_Init, MPI_Comm_size, MPI_Comm_rank, MPI_Finalize

© Point-to-point
MPI_Ssend, MPI_Recv, MPI_Sendrecv

©® Broadcast
Send same data from one rank to all others

© Reduction
Combine results from all ranks (e.g. sum)

© Scatter

Send different data from one rank to all others
O Gather

Collect data from one rank to all others
@ All-to-all

Everyone sends something to everyone

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 3/26

Recap: Send/Recv code

// fifthmessage.cpp
#include <iostream>
#include <string>
#include <mpi.h>
int main() {
int rank, size, left, right;
double msgsent, msgrcvd;
MPI_Init(nullptr, nullptr);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
left = rank-1;
if (left < 0) left = size-1;
right = rank+1;
if (right >= size) right = 0;
msgsent = rank*rank;
msgrcvd = -999.;
MPI_Sendrecv(&msgsent, 1, MPI_DOUBLE, right, 749,
&msgrcvd, 1, MPI_DOUBLE, left, 749,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
std::cout << std::to_string(rank) + ": Sent " + std::to_string(msgsent)
+ " and got " + std::to_string(msgrcvd) + "\n";
MPI_Finalize();

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 4/26

By the way, about that string concatenation

To print a line of text from each process, the code does not have

std::cout << rank << ": Sent " << msgsent << " and got " << msgrcvd << "\n";

but instead uses string conversion and concatenation before streaming to the terminal

std::cout << std::to_string(rank) + ": Sent " + std::to_string(msgsent)
+ " and got " + std::to_string(msgrcvd) + "\n'";

There's a good reason:
e In the first case, each “<< SOMETHING" is a request for output to the terminal.
e The requests are handled in (essentially) random order.

e This means the parts of the output lines are likely interleaved, and the lines don’t make any sense.

By concatenating everything on the same line to a string,
each process has just one request to write a single line.

While these can still be processed in any order, the lines stay intact.

Bonus: this will help in parallelization of output. :
Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 5/26

3. MPI Broadcast

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 6/26

Broadcast

This involves one process sending data to all others.

#include <mpi.h> $ mpicxx -o bcastex bcastex.cpp
#include <string> $ mpirun -n 3 ./bcastex
#include <iostream> What is your name? Ramses
int main() { Rank O knows Ramses

int rank, size, iorank = 0; Rank 1 knows Ramses

std::string name; Rank 2 knows Ramses

MPI_Init(nullptr, nullptr);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank == iorank) {
std::cout << "What is your name? ";
std::cin >> name;
size = name.size();
¥
MPI_Bcast(&size, 1, MPI_INT,
iorank, MPI_COMM_WORLD) ;
name.resize(size);
MPI_Bcast (&name[0], size, MPI_CHAR,
iorank, MPI_COMM_WORLD) ;
std::cout << "Rank " + std::to_string(rank)
+ " knows " + name + "\n";
MPI_Finalize();

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 7/26

4. MPI Reductions

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 8/26

Reductions: Min, Mean, Max Example

e Calculate the min/mean/max of random
numbers -1.0 ... 1.0 .
e Should trend to -1/0/+1 for a large N.
(min,mean,max);
e How to MPI it? /
e Partial results on each node, collect all to . (min,mean,max)o

node 0.

(min,mean,max)2

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 9/26

Reductions: Min, Mean, Max Example (1/2)

// Computes the min,mean&max of random numbers uniform(-1.0,1.0);
#include <mpi.h> std::minstd_rand engine(14);
#include <iostream> // each process skip ahead to start
#include <algorithm> std: :engine.discard(nxstart);
#include <random> // compute local data
#include <rarray> for (long i=0;i<nxown;i++)
int main() dat[i] = uniform(engine);
{ const long MIN=0, SUM=1, MAX=2;
const long nx = 200'000'000; rvector<double> mmm(3);
// find this process place mmm = le+19, 0, -1le+19;
int rank; for (long i=0;i<nxown;i++) {
int size; mmm [MIN] = min(dat([i], mmm[MIN]);
MPI_Init(nullptr, nullptr); mmm [MAX] = max(dat[i], mmm[MAX]);
MPI_Comm_size(MPI_COMM_WORLD, &size); mmm [SUM] += dat[i];
MPI_Comm_rank (MPI_COMM_WORLD, &rank); ¥
// determine its subrange of data // send results to a collecting rank
const long nxper=(nx+size-1)/size; const long collectorrank = O0;
const long nxstart=nxper*rank; if (rank != collectorrank)
const long nxown=(rank<size-1)?nxper MPI_Ssend(mmm.data(), 3,MPI_DOUBLE,
: (nx-nxper*(size-1)); collectorrank, 749,
rvector<double> dat(nxown) ; MPI_COMM_WORLD) ;
std::uniform_real_distribution<double> else { :

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 10 /26

Reductions: Min, Mean, Max Example (1/2)

rvector<double> recvmmm(3);
for (long i = 1; i < size; i++) {
MPI_Recv(recvmmm.data(), 3,
MPI_DOUBLE,
MPI_ANY_SOURCE, 749,
MPI_COMM_WORLD,
MPI_STATUS_IGNORE) ;
mmm [MIN] = min(recvmmm[MIN],

mmm [MIN]) ;
mmm [MAX] = max(recvmmm[MAX],
mmm [MAX]) ;
mmm [SUM] += recvmmm[SUM] ;
}
// output

std::cout << "Global Min/mean/max "
<< mmm[MIN] << " "
<< mmm[SUM]/nx <<" "
<< mmm[MAX] << "\n";
}
MPI_Finalize();
I

Ramses van Zon Distributed Parallel Programming with MPI

- part 2

PHY1610 Winter 2025

Efficiency?

CPUI1 CPU2 CPU3 CPU4

® Requires (P-1) messages . ' ' .

e 2(P-1) if everyone then needs to get the sum S S sum
answer. 1

Sum

I eermomn = 17 Ccomm Sum
sSum

Sum

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 12 /26

Better Summing

e Pairs of processors; send partial sums CPU1 CPU2 CPU3 CPU4
e Max messages received log, (P)
e Can repeat to send total back. sum sum sum sum
- \f |
. Sum
Tcomm =2 logz(P)Ccomm Suri
total

Reduction: Works for a variety of operations (+,*,min,max)

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 13 /26

MPI Collectives

[
S 71
i -

MPI_Allreduce(sendptr, rcvptr, count, MPI_TYPE, MPI_Op, Communicator);

MPI_Reduce(sendbuf, recvbuf, count, MPI_TYPE, MPI_Op, root, Communicator);
TP EERR s PR

sendptr/rcvptr: pointers to buffers

e count: number of elements in ptrs

e MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT, MPI_CHAR, etc.

MPI_Op: one of MPI_SUM, MPI_PROD, MPI_MIN, MPI_MAX.
e Communicator: MPI_COMM_WORLD or user created.

The “A11" variant sends result back to all processes; non-A11 sends to process root.
¥ "-*I_l: 3 i lI
™ o . # &

= *

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 14 /26

Reductions: Min, Mean, Max with MPI Collectives

rvector<double> globalmmm(3) ;

MPI_Allreduce (&mmm[MIN], &globalmmm[MIN], 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD) ;
MPI_Allreduce (&mmm[MAX], &globalmmm[MAX], 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD) ;
MPI_Allreduce (&mmm[SUM], &globalmmm[SUM], 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) ;

if (rank==0)
std::cout << "Global Min/mean/max
<< mmm[MIN] << " "
<< mmm[SUM] /nx << " "
<< mmm[MAX] << endl;

"

ETHELCRTER AT Distributed Parallel Programming with MPI

- part 2 PHY1610 Winter 2025 15 /26

More Collective 7 ii-ations
Collective e
Reductions are an example of a collective operation.
® As opposed to the pairwise messages we've seen before

» All processes in the communicator must participate.

Cannot proceed until all have participated.

® Don't necessarity know what's “under the hood".
t Bhios ' F Mo g
Other MPI Collectives
5. Scatter 6. Gather

MPI_Scatter MPI_Gather

Q== @n @ @10 (@)

OLNOINOLRO -
lamses van Zon Distributed Parallel Progfamming with MPI - part 2

© Even more:
e All-to-all ...
e File 1/0

» Barriers (avoid!)

PHY1610 Winter 2025

16 /26

MPI| Domain decomposition

ETHELCRTER AT Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 17 /26

Solving the diffusion equation with MPI

Consider a diffusion equation with an explicit finite-difference, time-marching method.

Imagine the problem is too large to fit in the memory of one node, so we need to do domain
decomposition, and use MPI.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 18 /26

Discretizing Derivatives

e Partial Differential Equations like the T Ty —2T; + T,

diffusion equation o9x2 A2

_0/0/0]

are usually numerically solved by finite
differencing the discretized values.

e Implicitly or explicitly involves interpolating . . .
data and taking the derivative of the

interpolant.

e Larger “stencils” — More accuracy.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 19/26

Diffusion equation in higher dimensions
Spatial grid separation: Ax. Time step At.

Grid indices: 1, j. Time step index: (n)
1D

oT T(n) _ T‘(’"'_l)

K2 (2

o 1) o + 1)

ox? |, Agx?
2D

or| T -1V

| _ ot
. . . <32T+ BZT)

i!j

~

At

T+ T =AY T+ T,

i,j—1

~

Ax?

o . \a=tas)l,
Ramses van Zon Bidributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025

20/26

Stencils and Boundaries
o How do you deal with 1D

ot THEEEET
1 2 3 4 5 6

e The stencil juts out, you !

need info on cells beyond e Number of guard cells
those you're updating. ng=1

e Loop from
e Common solution: it =ng.N — 2n,.
Guard cells:

» Pad domain with these
guard celss so that
stencil works even for
the first point in domain.

» Fill guard cells with
values such that the
required boundary

conditions are met. ;
Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 21/26

Domain decomposition

e A very common approach to
parallelizing on distributed
memory computers.

e Subdivide the domain into
contiguous subdomains.

e Give each subdomain to a
different MPI process.

e No process contains the full
datal

e Maintains locality.

® Need mostly local data, ie.,
only data at the boundary
of each subdomain will
need to be sent between
processes.

Ramses van Zon Distributed Parallel Programming with MPI - part 2

Guard cell exchange

e In the domain decomposition, the stencils
will jut out into a neighbouring subdomain.
e Much like the boundary condition.

e One uses guard cells for domain
decomposition too.
e Could use even/odd trick, or sendrecv.
e |f we managed to fill the guard cell with
values from neighbouring domains, we can
treat each coupled subdomain as an isolated
domain with changing boundary conditions.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 23/26

1D diffusion with MPI

Before MPI

a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)
newT[i] = T[i] + ax(T[i+1]+T[i-1]1-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[i];

Note:

e the for-loop over i could also have been a
call to dgemv for a submatrix.

e the for-loop over i could also easily be
parallelized with OpenMP

s . RamsesvamZppst ~ p a2~ ;1\ Distributed Parallel Programming with MPI - part 2

After MPI

MPI_Init(&argc,&argv) ;

MPI_Comm_rank (MPI_COMM_WORLD,&rank) ;
MPI_Comm_size (MPI_COMM_WORLD,&size) ;

left = rank-1; if(left<0)left=MPI_PROC_NULL;
right = rank+1l; if(right>=size)right=MPI_PROC_NULL;
localn = n/size;

a = 0.25%dt/pow(dx,2);

guardleft = 0;

guardright = localn+1;

for (int t=0;t<maxt;t++) {

MPI_Sendrecv(&T[1], 1,MPI_DOUBLE,left, 11,
&T[guardright] ,1,MPI_DOUBLE,right,11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE) ;

MPI_Sendrecv(&T[nlocall, 1,MPI_DOUBLE,right,11,
&T[guardleft], 1,MPI_DOUBLE,left, 11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

if (rank==0) T[guardleft] = 0.0;

if (rank==size-1) T[guardright] = 0.0;

for (int i=1; i<=localn; i++)

newT[i] = T[i] + ax(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)
T[i] = newT[i];

PHY1610 Winter 2025 24 /26

2D diffusion with MPI

How to divide the work in 2d?

® Less communication (18 edges).

e Harder to program, non-contiguous data to
send, left, right, up and down.

e Easier to code, similar to 1d, but with
contiguous guard cells to send up and down.

® More communication (30 edges).

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 25/26

Let's look at the easiest domain decomposition.

...S.erﬂ... Parallel (P = 3):
EEEEEEER
THEEEENT
TEEEEEET
=------= ENEEEEEE
=llllll= EEEEEEEN
EEEEEEER
EEEEEEEE - 0
HEEEEEER
Communication pattern:
HEEEEEEER

Copy upper stripe to upper neighbour bottom guard cell. N [[[| B

Copy lower stripe to lower neighbout top guard cell.

L]
- Gy _ B N
e Contiguous cells: can use count in MPI_Sendrecv.
.

Similar to 1d diffusion.

Ramses van Zon Distributed Parallel Programming with MPI - part 2 PHY1610 Winter 2025 26/26

	Communication patterns in MPI
	3. MPI Broadcast
	4. MPI Reductions
	MPI Domain decomposition

