
Quantitative Applications for Data Analysis:
Monte Carlo methods

Erik Spence

SciNet HPC Consortium

27 March 2025

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 1 / 30

Today’s slides

Today’s slides can be found here. Go to the ”Quantitative Applications for Data Analysis”
page, under Lectures, ”Monte Carlo methods”.

https://scinet.courses/1346

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 2 / 30

https://scinet.courses/1346

Today’s class

Today we will visit the following topics:

Monte Carlo methods, in general,

Monte Carlo integration,

Markov Chain Monte Carlo.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 3 / 30

Why randomness?

Why are we interested in randomness?

To simulate some physical phenomenon that has noise. E.g. Brownian motion, Nyquist
noise. On the level of their description, this is real randomness.

To perform averages or integrals in systems with many degrees of freedom. E.g. Stat.
Phys. computations, path integral calculations. Here, the main objective is to get the
converged answer quickly.

To test a statistical model.

We’ve seen this already in some of our assignments.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 4 / 30

Creating randomness
True random number generators include

Lava lamps,

Radioactive decay,

Various quantum processes,

Atmospheric noise,

Random computer hardware noise signals (thermal noise).

These are generally slow, expensive, impossible to reproduce for debugging. Hard to
characterize underlying distribution.

In contrast, examples of Pseudo-Random Number Generators (PRNGs) include

Come up with a algorithm that produces random numbers

But wouldn’t such an algorithm would be deterministic?

Only has to act random, i.e., give fair and uncorrelated sequence.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 5 / 30

Pseudo-Random Number Generators

Recipe:

Define some ‘state’, initialized
by some ‘seed’ value(s).

Produce a number from this
state.

Advance the state
determistically.

As long as the numbers
produces behave as if they are

I independent
I identically distributed
I according to a predefined

distribution (eg uniform)

In [1]: import numpy as np

In [1]: import numpy.random as npr

In [1]:

In [1]: npr.seed(111)

In [2]: npr.choice(np.arange(10), 2, replace = True)

Out[2]: array([7, 0])

In [3]:

In [3]: npr.seed(111)

In [4]: npr.choice(np.arange(10), 2, replace = True)

Out[4]: array([7, 0])

In [5]:

In [5]: npr.seed(111)

In [6]: npr.choice(np.arange(10), 2, replace = True)

Out[6]: array([7, 0])

In [7]:

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 6 / 30

Monte Carlo analysis

Monte Carlo analyses are a collection of techniques whose unifying feature is the use of
random sampling to generate results. These analyses generally fall into one of three categories:

Adding randomness to otherwise-deterministic dynamics, and studying how the dynamics
are changed, or the resulting data distributions.

Generating samples from a given probability distribution, P (x), usually a distribution
that is complicated and can’t be dealt with nicely in closed form.

Estimating expectation values under this distribution, e.g.

〈A(x)〉 =
∫
P (x)A(x)dx

where x is typically high dimensional.

These depend on having a good random number generator!

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 7 / 30

Monte Carlo example: integration

The basic idea of Monte Carlo integration is very simple and only requires elementary statistics.
Suppose we want to find the value of

S =

∫ b

a
f(x)dx

.
The quantity S is usually estimated using the expression

S '
(b− a)
n

n∑
i=1

f(a+ Ui(b− a))

where U is the uniform distribution sampled n times between b and a. As you can see, this
estimation is simply calculating the average value of f in the interval and then multiplying by
(b− a) to get the value of the area.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 8 / 30

Integration, example

Let’s integrate the function

f(x) = cos(sin(x))

from 0 to π.

In [7]:

In [7]: import numpy as np

In [8]: import matplotlib.pyplot as plt

In [9]:

In [9]: x = np.linspace(0, pi, 100)

In [10]: plt.plot(x, np.cos(np.sin(x)))

In [11]:

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 9 / 30

Integration, example, continued

Let’s integrate the function
f(x) = cos(sin(x)) from 0 to π.

int MC.py

import numpy.random as npr

import numpy as np

def f(x):

return np.cos(np.sin(x))

def int MC(num, a, b):

results = 0

for i in range(num):

results += f(a + npr.uniform(0, b - a))

return results * (b - a) / num

In [11]:

In [11]: import int MC

In [12]:

In [12]: int MC.int MC(10000, 0, pi)

Out[12]: 2.4101580829908666

In [13]:

In [13]: import scipy.integrate as si

In [14]:

In [14]: si.simps(np.cos(np.sin(x)), x)

Out[14]: 2.403936768802837

In [15]:

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 10 / 30

Multidimensional integration

Using a Monte Carlo integration technique on a 1D problem is inefficient. There are much
more efficient techniques out there, such as Simpson’s rule.

But suppose our integral is of a higher dimension, say, 4D. This is where Monte Carlo
integration techniques start to become more useful. They can efficiently reach into as many
dimensions as necessary.

S =

∫
V
f(x)dx

Where now we are integrating over the 3D domain V , and x is a 3D vector.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 11 / 30

Multidimensional integration, continued

Let us integrate over 3 dimensions, rather than 1.

S =

∫
V
f(x)dx

The quantity S is estimated using a similar expression to the 1D example.

S '
V

n

n∑
i=1

f(ax + Ui(bx − ax), ay + Ui(by − ay), az + Ui(bz − az))

where ax, bx are the limits of integration for x, and the samples from the uniform distribution
must be evenly sampled throughout V . Obviously, if a data point is randomly sampled outside
of V it cannot be used.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 12 / 30

Multidimensional integration, example

Let’s integrate over the 4-sphere, to
calculate its volume.

Rather than limit the range of npr.uniform
to V , we keep sampling points until all
points are within V . This makes sure the
points are spaced evenly.

Note that the volume of a 4-sphere is
π2r4/2. We get half this value, since
we’re only integrating half of the 4-sphere.

In [15]: import MultiD int MC as MD

In [16]:

In [16]: MD.multiD int MC(1, 10000)

Out[16]: 2.4791925774411387

MultiD int MC.py

import numpy.random as npr, numpy as np

def f(r, x, y, z):

return np.sqrt(r**2 - x**2 - y**2 - z**2)

def my samp(r):

x = npr.uniform(-r, r); y = npr.uniform(-r, r)

z = npr.uniform(-r, r); return x, y, z

def multiD int MC(r, num):

results = 0

for i in range(num):

x, y, z = my samp(r)

while (x**2 + y**2 + z**2 > r**2):

x, y, z = my samp(r)

results += f(r, x, y, z)

return results / num * (4 / 3 * np.pi * r**3)

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 13 / 30

Monte Carlo integration, summary

A few notes about Monte Carlo integration.

MC integration works under minimal assumptions (the desired mean must exist, then (law
of large numbers) P(limn→∞ µ̂ = µ) = 1.

MC integration does not deliver extreme accuracy

RMSE = E((µ̂− µ)2) = σ/
√
n

MC integration is very competitive in high dimensional or non-smooth problems.

MC integration has good error estimation.

There are ways to improve the approach we’ve used, such as using using non-uniform
sampling (Importance sampling).

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 14 / 30

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is considered one of the most important algorithms of
the 20th century.

It combines two techniques:
I Monte Carlo: estimating a distribution’s properties by randomly sampling from it, and
I Markov Chains: the random samples are generated by a restricted sequential process.

The resulting chain of samples is essentially a ’random walk’ through a high-dimensional
space.

This walk is used for optimization problems and model fitting, in particular Bayesian
inference.

Once you have your chain, you can use this data to determine the distributions of
whatever parameters you’re after.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 15 / 30

Markov chain

A Markov chain is a chain of ’steps’ through
parameter space, with particular characteristics.

Usually when we deal with random samples
they are independent and identically
distributed. New samples don’t depend on
previous samples.

A Markov chain is a sequence of random
numbers θ0, θ1, ..., θn where the probability
of θi+1 depends on θi, but does NOT
depend on θi−1.

Distribution is P (θi+1|θi) not P (θi).

A classic example of a Markov chain is a
random walk: θi+1 = θi + ε

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 16 / 30

Bayesian Inference
Bayesian inference is a process for updating our beliefs when we acquire new information,
using Bayes theorem:

P (θ|x) =
P (x|θ)P (θ)

P (x)

Terminology:

x is the data, θ are the model parameters.

P (θ|x) is called the posterior, the probability distribution of θ after knowing x.

P (θ) is called the prior, π(θ), the a priori probability distribution of θ (our beliefs about
θ prior to knowing x).

P (x|θ) is called the likelihood, L(θ, x), the probability distribution of x given θ.

P (x) is called the model evidence: P (x) =
∫
P (x|θ)P (θ)dθ.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 17 / 30

MCMC

MCMC is most often used to determine the posterior distribution, P (θ|x), for some problem.
So what do we need to do this?

Data, x. Presumably you already have this.

A model with which you can represent your data. The model parameters, θ, are
contained herein.

A sampling algorithm, with which you generate new values for θ, your model parameters.

An equation for your likelihood, L(θ, x).

An equation for the prior, π(θ). This is needed, as you need to describe what you think
the parameters look like before you have any data.

Once you have these pieces you can begin to perform MCMC.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 18 / 30

Bayesian Inference, likelihood
So how do we calculate the likelihood, P (x|θ) (L(θ, x)),? We make the usual assumption,
that our data contains noise, yobs = ytrue + ε, and then assume that the noise is Gaussian,
and the data are uncorrelated. As a result, we have

P (x|θ) =
∏
i

1
√
2πσi

e
−1

2

(
yi−f(xi)

σi

)2

Recall that yi − f(xi) are just the residuals of the model, f , and σi is the uncertainty for
data point i. This is sometimes modelled as the log of the likelihood.

logP (x|θ) =
∑
i

− log(2π)− log(σ2
i)−

(
yi − f(xi)

σi

)2

where we’ve multiplied the right side by 2. Logs are easier to deal with and are more
numerically stable.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 19 / 30

Bayesian Inference, prior

So how do we calculate the prior, π(θ)? This is subjective, based on the prior knowledge of
the researcher. There are several commonly used options:

uniform prior: prior is a constant over some range, no particular value of θ is any better
than any other.

log-uniform prior: useful if your parameter many orders of magnitude (doesn’t work near
zero).

posterior prior: use a previously-calculated posterior as your prior, if the posterior is
related to the problem you’re working on.

observation-based prior: using observations to create a distribution to use as your prior.

It’s not uncommon to use the log of the prior, since it’s more numerically stable.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 20 / 30

MCMC, sampler
So what does the sampling algorithm do?

It generates a new value for θi+1, given θi.

This is done by sampling from the ”proposal distribution”, q(θi+1|θi), (typically
Gaussian, for continuous model parameters). This value is added to θi to get θi+1. The
proposal distribution should be symmetric and centred at zero.

This value of θi+1 is then passed to the model, which, using the data, calculates the
likelihood, L(θ, x).

The value is also passed to the prior, π(θ), to calculate its value.

The likelihood and prior are then combined to calculate the posterior, P (θ|x).

P (θ|x) ∝ L(θ, x)π(θ)

We ignore the denominator P (x), as this is just a normalization constant.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 21 / 30

MCMC, continued

Ok, now that we’ve got the pieces, how do we actually do MCMC?

We will use a particular type of MCMC called the Metropolis algorithm.

1 Choose a starting position for the model parameters, θ0.

2 Propose the next data point using the sampler.

3 Compare the posterior’s new value, P (θi+1|x), to the previous value, P (θi|x). If
P (θi+1|x) > P (θi|x) then take θi+1 as the next value in our Markov chain.

4 If P (θi+1|x) < P (θi|x) then randomly take θi+1 to be the current value in the chain
with probability P (θi+1|x)/P (θi|x).

5 Repeat, starting at step 2.

The resulting chain, θ0, θ1, ..., θn, is our Markov Chain. It is the data used to
calculate P (θ|x).

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 22 / 30

Bayesian inference, example

Suppose we’ve got some data and, having plotted it, have decided that the data follows a
linear relationship. Let’s use MCMC to generate the distributions of our model parameters.

What do we need to do MCMC?

A model: y = mx+ b+ ε. Let us assume that the noise is Gaussian, with a mean of
zero and a standard deviation of σ.

This means there are 3 model parameters: θ = (m, b, σ).

A likelihood, L(θ, x): we will use a Gaussian of the residuals.

A prior, π(θ): we will use uniform priors for this calculation.

We will also take the log of everything, as this makes things more numerically stable, and
simplifies the coding. We will code this ourselves, as it’s not too difficult.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 23 / 30

Bayesian inference, example, continued
my mcmc.py

import scipy.stats as ss, numpy as np

def likelihood(params, x, y):

m = params[0]; b = params[1]; sd = params[2]

pred = m * x + b

We want the log of the Gaussian. We take

the sum because we are taking the log.

return np.sum(ss.norm.logpdf(y, loc = pred,

scale = sd))

def prior(params):

m = params[0]; b = params[1]; sd = params[2]

We take the prior to be log(P(m)P(b)P(sd)).

Assume uniform probabilities from -50 to 50.

return ss.uniform.logpdf(m, -50, 100) +

ss.uniform.logpdf(b, -50, 100) +

ss.uniform.logpdf(sd, -50, 100)

my mcmc.py, continued

def posterior(params, x, y):

return likelihood(params, x, y) +

prior(params)

def proposal func(params):

We propose 3 new values based on the

existing values, using hard-coded

standard deviations.

return ss.norm.rvs(size = 3, loc = params,

scale = 0.1)

def calc chisq(params, x, y):

m = params[0]; b = params[1]

sd = params[2]

return np.sum(((m * x + b - y) / sd)**2)

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 24 / 30

Bayesian inference, example, continued more

In [17]:

In [17]: import matplotlib.pyplot as plt

In [18]:

In [18]: trueM, trueB, trueSd = 5, -5, 10

In [19]:

In [19]: n = 100

In [20]: x = np.linspace(-20, 20, n)

In [21]:

In [21]: y = trueM * x + trueB

In [22]: y += ss.norm.rvs(size = n, loc = 0,

scale = trueSd)

In [23]:

In [23]: plt.plot(x, y, ’.’)

In [24]:

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 25 / 30

Bayesian inference, example, continued some more

In [24]:

In [24]: import my mcmc

In [25]:

In [25]: startvalue = np.array([1, 0, 1])

In [26]:

In [26]: num = 10000

In [27]:

In [27]: chain = my mcmc.run mcmc(startvalue,

x, y, num)

In [28]:

In [28]: chain = np.array(chain)

In [29]:

my mcmc.py, continued

def run mcmc(startvalue, x, y, n):

chain = [startvalue]

for i in range(n):

proposal = proposal func(chain[i])

old p = posterior(chain[i], x, y)

new p = posterior(proposal, x, y)

if new p > old p:

chain.append(proposal)

else:

p = np.exp(new p - old p)

if ss.uniform.rvs() < p:

chain.append(proposal)

else: chain.append(chain[i])

return chain

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 26 / 30

Bayesian inference, example, burn in

In [29]: chisq = np.zeros(num + 1)

In [30]:

In [30]: for i in range(num + 1):

...: chisq[i] = my mcmc.calc chisq(chain[i,],

...: x, y)

In [31]:

In [31]: plt.plot(chisq)

In [32]: plt.ylim(0,1000)

In [33]:

In [33]: trueM, np.mean(chain[2000:,0])

Out[33]: (5, 4.973537491078847)

In [34]: trueB, np.mean(chain[2000:,1])

Out[34]: (-5, -4.719488741813247)

In [35]: trueSd, np.mean(chain[2000:,2])

Out[35]: (10, 10.325602452263714)

”Burn in” is the period before the MCMC
lands near the correct values, as can be
seen in the chi-squared values for the chain.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 27 / 30

Bayesian inference, example, burn in, continued

We can plot the walk as it tries to find the
correct values of the parameters.

We can see that the chain has a much
better sense of the value of m than b.

In [36]:

In [36]: plt.plot(chain[:,0], chain[:,1])

In [37]:

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 28 / 30

Bayesian inference, example, burn in, continued

In [37]: ans = chain[2000:,]

In [38]:

In [38]: plt.subplot(131)

In [39]: h = plt.hist(ans[:,0])

In [40]: plt.xlabel(’m’)

In [40]:

In [40]: plt.subplot(131)

In [41]: h = plt.hist(ans[:,1])

In [42]: plt.xlabel(’b’)

In [42]:

In [42]: plt.subplot(131)

In [43]: h = plt.hist(ans[:,2])

In [44]: plt.xlabel(’sd’)

In [44]:

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 29 / 30

Summary

Some notes from today’s class.

MCMC is a powerful technique, but it’s not foolproof.

How to know if the chain has adequately sampled the distribution (aka converged)?
I Run multiple chains with different starting points, and compare the inter-chain and

intra-chain variances (Gelman-Rubin test).

an MCMC can be used for approximating a multi-dimensional integral by using an
ensemble of ”walkers” moving around randomly. At each point where a walker steps, the
integrand value at that point is counted towards the integral.

the random samples of the integrand used in a conventional MC integration are
statistically independent, those used in MCMC methods are correlated.

A Markov chain is constructed in such a way as to have the integrand as its equilibrium
distribution.

Erik Spence (SciNet HPC Consortium) Monte Carlo methods 27 March 2025 30 / 30

	Monte Carlo
	Monte Carlo integration
	Multidimensional integration

	Markov Chain Monte Carlo
	Markov Chain
	Bayesian inference
	MCMC
	example
	Burn in

