
Quantitative Applications for Data Analysis:
unsupervised learning

Erik Spence

SciNet HPC Consortium

25 March 2025

Erik Spence (SciNet HPC Consortium) Unsupervised learning 25 March 2025 1 / 36



Today’s slides

Today’s slides can be found here. Go to the ”Quantitative Applications for Data Analysis”
page, under Lectures, ”Unsupervised learning”.

https://scinet.courses/1376
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Today’s class

Today we’re going to explore some unsupervised learning algorithms:

Factor Analysis,

Principle Component Analysis,

Clustering algorithms.

These are algorithms that don’t require the target (label). As a result, they are
”unsupervised”, they have nothing to guide them.

Ask questions!
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Curse of dimensionality

The ”curse of dimensionality” is a generic claim which refers to the difficulty in properly fitting
or modelling data in high-dimensional spaces.

Each feature in your data set is another dimension.

Each dimension gives more space for your solution to live in.

The more space there is, the harder it can be to find the solution, or build a meaningful
model.

”Dimensionality reduction”, or ”feature selection” is the act of either
I ignoring data which is obviously not important, or
I modifying the data to put it into a form which has fewer dimensions.

We will examine Factor Analysis and Principle Component Analysis (PCA), which are both
dimensionality-reduction techniques.

Erik Spence (SciNet HPC Consortium) Unsupervised learning 25 March 2025 4 / 36



Factor analysis

Imagine you’ve got a bunch of data, each with 6
features, x1, x2, ..., x6. You’ve observed that there
are correlations between some of the features.

It’s possible that there might be some underlying,
unobserved, ’factors’, say f1 and f2, which are
responsible for certain features, which is why some
features are correlated to each other.

It would be useful to represent the data through
these factors (also called ”latent variables”), rather
than the original features, since there are presumably
fewer of them, and they are the actual cause of the
feature’s values.
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Factor analysis, continued

The goal of factor analysis (sometimes called
”exploratory factor analysis”) is to determine
linear relationships between the factors and the
features. Assuming there are only 2 factors, these
relationships would take the form

x1 = β10 + β11f1 + β12f2 + ε1

x2 = β20 + β21f1 + β22f2 + ε2

...

x6 = β60 + β61f1 + β62f2 + ε6

Where the ε terms represent noise, and the β
factors are known as ”loadings”.
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Factor analysis, continued more

To calculate the relationships on the previous slide, we will make a few assumptions:

The noise terms, ε, are independent, and have a mean of zero.

The unobservable factors are independent of each other, have a mean of zero and a
variance of 1 (the factors have been ’standardized’).

The calculation of the loadings turns out to just be a whole lot of algebra, and correlations.
We won’t delve into the derivation details here.

We generally don’t stop there. The calculation can be refined.

The calculation of the factors is not unique (there are many combinations of loadings
which will give the same answer).

As such we can ”rotate” the answer such that some of the loadings are large, and others
are small. This makes the interpretation of the factors easier.
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Factor analysis, example

sklearn includes a FactorAnalysis
model, but it’s missing important
functionality. I use the
factor analyzer package instead.

Let us do an example. We first
confirm that the features have
enough correlation. There are
tests available to see if factor
analysis is appropriate:

Kaiser-Meyer-Olkin,

Bartlett’s test.

A KMO test value >0.7 is
required.

In [1]: import factor analyzer as fa

In [2]: import sklearn.datasets as skd

In [3]:

In [3]: data = skd.load breast cancer()

In [4]:

In [4]: fa.calculate kmo(data.data)

Out[4]:

(array([0.834635, 0.643526, 0.853340, 0.864032, 0.814716,

0.879397, 0.891928, 0.900277, 0.825102, 0.831813,

0.834121, 0.484589, 0.842907, 0.851998, 0.644278,

0.871297, 0.825479, 0.835166, 0.583218, 0.811496,

0.823087, 0.603297, 0.884937, 0.820445, 0.753160,

0.851277, 0.902225, 0.891052, 0.690747, 0.812339]),

0.8322253094685496)

In [5]:
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Factor analysis, example, continued

Some of the KMO test values are
below 0.7.

This indicates that that
column is not strongly
correlated to any other
columns.

It may be advisable to
remove that column from the
analysis.

For this example we will leave the
low-KMO columns in.

In [5]:

In [5]: fa.calculate kmo(data.data)

Out[5]:

(array([0.834635, 0.643526, 0.853340, 0.864032, 0.814716,

0.879397, 0.891928, 0.900277, 0.825102, 0.831813,

0.834121, 0.484589, 0.842907, 0.851998, 0.644278,

0.871297, 0.825479, 0.835166, 0.583218, 0.811496,

0.823087, 0.603297, 0.884937, 0.820445, 0.753160,

0.851277, 0.902225, 0.891052, 0.690747, 0.812339]),

0.8322253094685496)

In [6]:
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Factor analysis, example, continued more

The tenth data point is most
strongly depenent on the
fourth factor.

Rotation of the data is done
automatically.

In [6]:

In [6]: model = fa.FactorAnalyzer(n factors = 8)

In [7]:

In [7]: new x = model.fit transform(data.data)

In [8]:

In [8]: data.data.shape, new x.shape

Out[8]: ((569, 30), (569, 8))

In [9]:

In [9]: new x[10, :]

Out[9]:

array([ 0.16629477, -0.7870072 , -0.68653714, 1.55710662,

-0.98180443, -0.2216149 , 0.01244827, 0.06496257])

In [10]:
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Factor analysis, example, continued some more

We plot the eigenvalues which result from the
analysis to determine how many factors we
actually need to keep.

Anything less than 1 is not important, so we
should keep the first six factors.

In [10]:

In [10]: import matplotlib.pyplot as plt

In [11]:

In [11]: plt.plot(model.get eigenvalues()[0],

’o-’)

In [12]: plt.axhline(1)

In [13]:
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Factor analysis, final notes

By representing the data using factors, we can now reduce the number of features. We then
feed this representation of the data into our favourite machine learning algorithm.

There isn’t enough time to cover all the subtleties. Some other things to be aware of:

Generally, before performing factor analysis, you should perform an ”adequacy test”,
which determines if the data can be factored:

I Bartlett’s test,
I Kaiser-Meyer-Olkin test.

There are different rotation algorithms available, which may affect the final results.

Note that factor analysis is sometimes controvertial, since the final result is not unique, and
thus the interpretation of the factors is subjective.
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Principle component analysis

Principle Component Analysis (PCA), seems similar to Factor Analysis on the surface, but it is
different in important ways. Like Factor Analysis, it is a technique that allows dimensionality
reduction in problems with purely continuous features.

It ignores the data targets; it merely imagines the data as points in a p-dimensional space.

PCA performs a spatial transformation to the data space,

the transformation rotates and scales the data space into directions defined by the
variance in the data.

Singular Value Decomposition is used to perform these steps.

In essence (in linear-algebra-speak), PCA simply projects the data onto a new basis set, where
the important features are clearer.
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PCA, continued

Principle component analysis picks out the
directions the data takes that contain the
most variance.

The direction in which the variance is
highest is rotated to point along the first
axes (the first principal component).
Next along the second axis, etc.

Increasingly higher dimensions are flatter
and flatter, as they have less variance.

The dimensions which have very little
variance contain very little information,
and can be discarded.
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PCA, example

We can perform PCA on the breast
cancer data set.

Unsurprisingly, PCA is built into sklearn.
Fitting the data takes a single line of
code.

Once built, the PCA object contains a
tonne of information about the fit,
including the principle components
themselves.

In [13]:

In [13]: import matplotlib.pyplot as plt

In [14]: import sklearn.decomposition as skde

In [15]:

In [15]: data = skd.load breast cancer()

In [16]: x = data.data

In [17]: y = data.target

In [18]:

In [18]: pca = skde.PCA()

In [19]: pca = pca.fit(x)

In [20]:

In [20]: pca.n components

Out[20]: 13

In [21]:
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PCA, example, continued

In [21]:

In [21]: x new = pca.transform(x)

In [22]:

In [22]: plt.subplot(1, 2, 1)

In [23]: plt.scatter(x[:, 0], x[:, 1], c = y)

In [24]: plt.subplot(1,2,2)

In [25]: plt.scatter(x new[:, 0], x new[:, 1],

...: c = y)

In [26]:

Use the ”transform” command to project
the data onto the new basis set.

Note how the clusters of the data are
more-easily distinguished.
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PCA, continued more

Of what use is it?

Once you have projected the data onto its principle components, you can determine which
components are most important.

Those dimensions which are least important can be discarded, resulting in a
dimensionality reduction.

Note that PCA will automatically center the data. No pre-centreing and scaling needed,
actually it would interfere with things.

Once projected onto the new space, clustering is sometimes a useful next step. PCA can
sometimes separate clusters that are otherwise difficult to detect.

But how do we decide which components to keep? What is a good criteria? If we don’t throw
away any dimensions we’re no better off than we were before.
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Explained variance ratio

The quality of the PCA, and which
components are worth keeping, is
indicated in the
”explained variance ratio ” variable.

This indicates that 98% of the
variance in the data set lies
along the first principle
component.

1.6% along the second, etc.

We should decide ahead of time
how many components are
needed to explain, say, 95% of
the variance.

In [26]:

In [26]: pca.explained variance ratio [0:4]

Out[26]: array([9.82044672e-01, 1.61764899e-02,

1.55751075e-03, 1.20931964e-04])

In [27]:

In [27]: import numpy as np

In [28]:

In [28]: np.cumsum(pca.explained variance ratio [0:4])

Out[28]: array([0.98204467, 0.99822116,

0.99977867, 0.9998996])

In [29]:

99.8% of the variance is explained by the first two
principle components.
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Explained variance ratio, continued

It’s easier to just specify ahead of time
that we want to only keep the principle
components which explain at least 95%
of the variance.

Specifying the ”n components” flag will
cause the function to cut the number of
components for you.

In this example we specify 99% so that
there is more than a single component.
This is an unnecessarily-high threshold
for real cases.

In [29]:

In [29]: pca2 = skde.PCA(n components = 0.99)

In [30]:

In [30]: pca2 = pca2.fit(x)

In [31]:

In [31]: pca2.n components

Out[31]: np.int64(2)

In [32]:

In [32]: x new2 = pca2.transform(x)

In [33]:

In [33]: x.shape

Out[33]: (569, 30)

In [34]: x new2.shape

Out[34]: (569, 2)

In [35]:

Erik Spence (SciNet HPC Consortium) Unsupervised learning 25 March 2025 19 / 36



PCA, summary

Some further notes about PCA:

PCA doesn’t drop features; rather, it generates combinations of all features in order of
how significantly they vary.

One generally keeps most of the information from all features, but expressed in a number
of combinations k < p.

However, especially in situations with a large number of dimensions, the least significant
principal components can often be profitably ignored, as there is very little variation in
those directions.

Once projected onto the new space, clustering is sometimes a useful next step. PCA can
sometimes separate clusters that are otherwise difficult to detect.

Note there are other types of dimensionality reduction as well: Locally Linear Embedding
(LLE), Linear Discriminant Analysis (LDA), and others.
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Clustering

Let’s switch to a different sort of classification approach: clustering.

This is a type unsupervised learning.

It’s unsupervised because there are no targets (labels) used.

This can show up in all sorts of applications:

Finding patterns in properties of galaxies.

Determine proteins with similar interaction types.

Market segmentation.

”Customers who buy X often buy...”.

There are two main clustering approaches you’ll run into: k-means and hierachical clustering.
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Clustering, continued
The reason for using algorithms to find clusters in the data is because

It’s difficult to find clusters in high-dimensional data (since you can’t visualize it all at
once).

You might want to summarize a large number of observations into fewer, similar clusters.

Obviously, we haven’t defined what we mean by ”similar” or ”cluster” yet.

A ”cluster” is a group of data points which are centered around some central, average
point.

The ”similarity” between points is determined by some measure of ”distance” between
them, in the p dimensional space in which they live.

In continuous spaces the distance can be Euclidean, or some other measure of distance
(L1 norm).

In ordinal spaces (bag-of-words counts, for example) you can use the ”cosine similarity”

cos θ = A·B
|A||B|
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K-means clustering

K-means clustering is a geometric clustering algorithm which finds roughly-spherical blobs of
clusters amongst the data. The algorithm is straightforward. Starting with k initial cluster
centres:

Assign each data point to the nearest centre.

Recalculate the center of each cluster, based on its members.

Move the centres to the new locations.

Repeat until converged (the centres stop moving).

The value of k must be specified before starting.
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K-means clustering, example

As you might expect, K-means is
built into sklearn.

It’s as easy to use as you might
hope.

Once the model is trained, you
can get the centers of the
clusters, and the predicted labels,
using the ”cluster centers ” and
”labels ” model entries.

In [35]: import sklearn.cluster as skc

In [36]:

In [36]: data = skd.load iris()

In [37]: x = data.data

In [38]: y = data.target

In [39]:

In [39]: model = skc.KMeans(n clusters = 3)

In [40]: model = model.fit(x)

In [41]:

In [41]: plt.scatter(x[:,0], x[:,2], c = model.labels )

In [42]:

In [42]: for i in range(3):

...: plt.scatter(model.cluster centers [i][0],

...: model.cluster centers [i][2],

...: c = ’ForestGreen’)

In [43]:
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K-means clustering, example, continued
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K-means clustering, continued

K-means has both strengths and weaknesses.

You need to know what value of k to use.

Random initialization of the centres can go badly wrong.

For this to be robust, you need to repeat many times.

This is usually done automatically by sklearn’s KMeans, and the best result is returned.

k-means has a tendency to make equally-populated clusters, which can lead to incorrect
results.

For this to work consistently, we need a way to measure the quality of the model.
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K-means clustering, quality measures

A few measures of error have been developed for K-means.

We’d like to minimize the within-cluster sum of squares, where µi is the centre of the ith
cluster.

WCSS =

k∑
i

∑
j∈Si

|xj − µi|2

We’d like to maximize the between-cluster sum of squares.

ICSS =

n∑
i

n∑
j

δ(Si, Sj) |xi − xj|2

These are output by standard k-means algorithms.
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K-means and cross-validation

How do we pick k? You
guessed it!

Create a KMeans object.

Use the cross val score
function to perform the
cross-validation for you.

The function returns the
scores for each k fold.

Examine the scores to
find the best k value.

In [43]: import sklearn.model selection as skms

In [44]:

In [44]: kvalues = range(1, 9)

In [45]: scores = np.zeros(len(kvalues))

In [46]:

In [46]: for i, k in enumerate(kvalues):

...: model = skc.KMeans(n clusters = k)

...: scores[i] = np.mean(skms.cross val score(model,

x, cv = 10))

In [47]:

In [47]: plt.plot(kvalues, scores, ’ko-’)

In [48]:

Unlike other algorithms, the accuracy of k-means does not
’turn over’, meaning start to get worse with increasing k.

Erik Spence (SciNet HPC Consortium) Unsupervised learning 25 March 2025 28 / 36



K-means and cross-validation, continued
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Agglomerative clustering

K-means uses a geometric approach to clustering. Agglomerative (hierarchical) clustering
works point-by-point:

All data points start in their own cluster.

At each iteration, the two ”best matching” are joined into the same cluster.

Repeat until there is only cluster left.

This builds a tree of connections. This tree then needs to be pruned to distinguish the
clusters. To do this we still need some sort of distance metric, and a linkage criteria, which
specifies the dissimilarity of the clusters.

k-means-like: what is the distance between the centres of the clusters which have been
built thus far?

single linkage: what is the minimum distance between any two points in two clusters.

mean linkage: what is the mean distance between all points in two clusters?
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Agglomerative clustering, example

As you might expect,
agglomeration clustering is
built into sklearn.

Let’s use a different data set
to test this: swiss roll.

The connectivity of the points
is determined using the
kneighbors graph command.
This creates a graph between
the points, based on some
metric.

In [48]: import sklearn.neighbors as skn

In [49]: x, y = skd.make swiss roll(300, noise = 0.4)

In [50]: x.shape

Out[50]: (300, 3)

In [51]:

In [51]: x = np.c [x[:, 0], x[:, 2]]

In [52]:

In [52]: x.shape

Out[52]: (300, 2)

In [53]:

In [53]: model = skc.AgglomerativeClustering(n clusters = 3,

connectivity = skn.kneighbors graph(x, 30))

In [54]: model = model.fit(x)

In [55]:

In [55]: plt.scatter(x[:,0], x[:,1], c = model.labels )

In [56]:

Erik Spence (SciNet HPC Consortium) Unsupervised learning 25 March 2025 31 / 36



K-Means versus Hierarchical clustering

K-means and hierarchical clustering
have very different behaviours.

K-means only cares about
distances ”as the crow flies”.

Hierarchical cares about
distances between individual
data points.

K-means requires the number of
clusters up front.

Hierarchical gives you an entire
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Agglomerative clustering: dendrogram code

# dendro linkage.py

import numpy as np

def build link array(model):

counts = np.zeros(model.children .shape[0])

n = len(model.labels )

for i, merge in enumerate(model.children ):

node count = 0

for child idx in merge:

if child idx < n: node count += 1 # leaf node

else: node count += counts[child idx - n]

counts[i] = node count

linkage array = np.column stack([model.children ,

model.distances , counts]).astype(float)

return linkage array

In [56]: import scipy.cluster.hierarchy as sch

In [57]: import dendro linkage as dl

In [58]:

In [58]: link array = dl.build link array(model)

In [59]:

In [59]: sch.dendrogram(link array)

In [60]: plt.show()

In [61]:

The scipy.cluster.hierarchy has the code to
build the linkage array and make the
dendrogram plot, but does not allow you to
use an arbitrary linkage function, as we did
on the previous slide, so we need to code it
ourselves.
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Agglomerative clustering: dendrogram
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Scikit-learn clustering algorithms

http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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Summary
Some things to remember:

Factor Analysis, PCA and clustering require numeric data.

Factor Analysis recasts the data as linear combinations of factors.

PCA projects the data onto a new basis set, based on the variance in the data.

PCA accounts for as much variance in the data as possible. Factor analysis accounts for
as much covariance in the data as possible.

By discarding the dimensions with minimal variance the dimensionality of the problem can
be reduced.

PCA results are also often used as the input to clustering algorithms, since the major
sources of variance have already been isolated.

Clustering algorithms group data into ’clusters’ of common attributes.

K-means find clusters by finding the centres of clusters of data. K-means requires k to be
specified.
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