
Quantitative Applications for Data Analysis:
resampling

Erik Spence

SciNet HPC Consortium

17 March 2025

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 1 / 27

Today’s slides

Today’s slides can be found here. Go to the ”Quantitative Applications for Data Analysis”
page, under Lectures, ”Resampling”.

https://scinet.courses/1376

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 2 / 27

https://scinet.courses/1376

Today’s class

Today we will visit the following topics:

Cross validation.

Bootstrapping.

Permutation tests.

With material stolen from L. Dursi.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 3 / 27

How do we choose the correct model?

Let’s consider the problem of fitting a polynomial to noisy data.

As you are likely aware, we can crank up the order of the polynomial and get a great fit to the
data (even perfect!). But this won’t do well on out-of-sample data.

So what do we do to choose the correct order of polynomial to fit to our data? How do we
choose the correct model for our data?

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 4 / 27

Generate some data, and fit
In [1]: import numpy as np

In [2]: import numpy.random as npr

In [3]: import matplotlib.pyplot as plt

In [4]: import sklearn.linear model as sklm

In [5]:

In [5]: n = 40

In [6]: x = np.linspace(-1, 1, n).reshape(-1, 1)

In [7]: x += 0.1 * npr.rand(n).reshape(-1, 1)

In [8]: y = np.tanh(8 * x) - x

In [9]: y += 0.1 * npr.rand(n).reshape(-1, 1)

In [10]:

In [10]: model = sklm.LinearRegression()

In [11]: model = model.fit(x, y)

In [12]:

In [12]: plt.plot(x, y, "ko")

In [13]: plt.plot(x, model.predict(x))

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

The ”+=” symbol means ”add the
right-hand side to the left-hand side”.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 5 / 27

Repeat with degree 20
In [14]: import sklearn.preprocessing as skp

In [15]:

In [15]: poly = skp.PolynomialFeatures(degree = 20)

In [16]: x poly = poly.fit transform(x)

In [17]: x poly.shape

Out[17]: (40, 21)

In [18]:

In [18]: model20 = sklm.LinearRegression()

In [19]: model20 = model20.fit(x poly, y)

In [20]:

In [20]: x2 = np.linspace(min(x), max(x), 100)

In [21]: plt.plot(x, y, ’ko’)

In [22]:

In [22]: plt.plot(x2, model20.predict(

...: poly.transform(x2)))

In [23]:

It hits almost every point! What a great fit!

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 6 / 27

Training versus validation

In general, we get our data, and that’s it.

We don’t have the luxury of generating more data on a whim.

We need to do out-of-sample testing of whatever model we generate, to make sure it
generalizes to new data.

But we often don’t have any new data. What to do?

The solution is to hold out some of the original data when we generate our model.

Most of the data is used for training the model, the rest is used for validating it.

These data should be chosen randomly.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 7 / 27

Training versus validation, continued

So we hold out some data, the ’training’ data, and build our model.

Once the model is chosen, then you can train the selected model on the entire training +
validiation data set.

But you will probably still want to end your paper with a sentence like ”the final model
achieved 80% accuracy...”.

This can’t be done using the data the model was trained on (train + validation)!

Any data which has touched the model cannot be used for the final result.

In this case, another chunk of data must be held out, for testing.

In the case of training-validation-testing, a common breakdown of the data sizes might be
50%-25%-25% of the initial set. If you don’t need a test data set, 2/3-1/3 is common.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 8 / 27

k-fold Cross Validation

There are some downsides to the approach we’ve taken for validation hold-out. What if most
outliers happen to be in the training set?

Ideally, we should do several partitions of the data set and average over the results. This is
called k-fold Cross Validation:

Partition the data set (randomly) into k sets.

For each set:
I Train on the remaining k − 1 sets.
I Validate on the held-out set.

Average the results, for some measure that gives you a sense of how badly the model is
doing (residuals or accuracy, usually).

Makes very efficient use of the data set, easily automated.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 9 / 27

k-fold Cross Validation, continued

How do we choose k?

if k is too large - the different training sets are very highly correlated (almost all of their
points are the same).

if k is too small - we don’t get very much advantage of averaging in the k validation data
sets.

In practice, 10 is a very commonly-used value for k; but again, this depends on the size of
your data set.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 10 / 27

k-fold cross-validation, regression example
The sklearn package has built-in
functionality to make cross-validation easy.

The cross validate function will do
cross validaton for you.

Unfortunately, it won’t do so
randomly. You need to use the KFold
function to force it to be random.

The model selection subpackage has a
KFold function. It returns the indices
of the training and testing data.

By default KFold does not shuffle the
indices, you need to tell it to do so.

crossvalidation.py

import numpy as np

import sklearn.model selection as skms

import sklearn.preprocessing as skp

import sklearn.linear model as sklm

import sklearn.pipeline as skpi

def estimateError(x, y, d, kfolds = 10):

pipe = skpi.Pipeline([

("poly", skp.PolynomialFeatures(degree = d)),

("model", sklm.LinearRegression())])

cv score = skms.cross validate(pipe, x, y,

cv = skms.KFold(n splits = kfolds,

shuffle = True).split(x))["test score"]

return -np.sum(cv score)

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 11 / 27

k-fold cross-validation, regression example, continued

We run this function on 50
points using 10-fold
cross-validation.

We calculated the error for
each degree; the minimum
is chosen. In practise, the
simplest model that is
”close enough” to the
minimum is generally a
good choice.

0 5 10 15 20
Degree

15

10

5

0

5

10

15

20

25

30

CV
 E

rro
r

1.0 0.5 0.0 0.5 1.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Selected Degree 9

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 12 / 27

Cross-validation and boostrapping

Cross-validation is closely related to a more fundamental method, bootstrapping.

Let’s say you want to find some statistic on some statistic of your data.

What is the standard deviation of the 5th quantile of your data?

What is the mean and standard deviation of an estimation error for a given model?

What is the 95% confidence interval for some calculated quantity?

You’d like new sets of data that you could calculate your statistics on, and then look at the
distribution of those.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 13 / 27

Non-parametric Bootstrapping

The key insight to the non-parametric bootstrap is that you already have an unbiased
description of the process that generated your data - the data itself.

The approach for the non-parametric bootstrap is:

Generate synthetic data sets from the original data set by resampling;

Calculate the statistic of interest on these synthetic data sets, and get the distribution of
that particular statistic.

Cross-validation is a particular case: CV takes k (sub)samples of the original data set, applied
a function (fit the data set to part, calculate error on the remainder), and calculates the mean.

Bootstrapping can be used far more generally: any time you need to estimate statistics on a
quantity whose statistics aren’t automatically calculated.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 14 / 27

Non-parametric bootstrapping, example

Suppose you want to get statistics on
the median of your data. How would
you get the uncertainty on the median?

Randomly sample from your data
to create a fake data set.

By default numpy.random.choice
sets ”replace = True”, so that you
are sampling from the full
population.

Do this many times.

Calculate statistics on the resulting
distribution.

In [23]: import sklearn.datasets as skd

In [24]: import numpy.random as npr

In [25]: dia = skd.load diabetes()

In [26]:

In [26]: bmi = dia[’data’][:,2]

In [27]:

In [27]: meds = [np.median(npr.choice(bmi, 200))

for i in range(1000)]

In [28]:

In [28]: np.mean(meds)

Out[28]: -0.0069275493192715136

In [29]:

In [29]: np.var(meds)

Out[29]: 1.3415090494694259e-05

In [30]:

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 15 / 27

Non-parametric bootstrapping, example, continued

In [30]:

In [30]: plt.hist(meds)

In [31]:

In [31]: mean meds = np.mean(meds)

In [32]: std meds = np.sqrt(np.var(meds))

In [33]:

In [33]: plt.axvline(mean meds, lw = 3,

color = ’red’)

In [34]: plt.axvline(mean meds + std meds,

lw = 3, color = ’green’)

In [35]: plt.axvline(mean meds - std meds,

lw = 3, color = ’green’)

In [36]:

We now have an estimate of the uncertainty
on the median.

0.025 0.020 0.015 0.010 0.005 0.000 0.005 0.010
0

50

100

150

200

250

300

350

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 16 / 27

Notes on Bootstrapping

Bootstrapping strengths:

Allows you to get information on a calculated quantity when the true distribution of that
quantity is unknown.

Bootstrapping weaknesses:

If the statistic of interest is at the edge of parameter space (minimum, maximum, for
example) the bootstrapped distribution does not converge to the true distribution.

If you have too few data points to begin with, bootstrapping will not magically make
things better. Your data must be a true representation of the population from which it is
drawn.

If your data’s probability distribution has a long tail, or infinite moments, bootstrapping
will fail, or give wildly inaccurate results. Examples include the Cauchy distribution, and
non-central Student t distribution with 2 degrees of freedom.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 17 / 27

Parametric Bootstrapping

If you know the form of the distribution that describes your data, you can simulate new data
sets:

Fit the distribution to the data;

Generate synthetic data sets from the now-known distribution to your heart’s content;

Calculate the statistics on these synthetic data sets, and get their distribution.

This works perfectly well if you know a model that will correctly describe your data; and
indeed if you do know that, it would be madness *not* to make use of it in your analysis.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 18 / 27

Parametric Bootstrapping, example

Suppose we want to do a parametric
bootstrap on our data, instead of
non-parametric.

The data look pretty Gaussian, let’s
pretend that we know that the data are
Gaussian.

In [36]: d = skd.load diabetes()

In [37]:

In [37]: s1 = d[’data’][:,4]

In [38]:

In [38]: plt.hist(s1)

0.10 0.05 0.00 0.05 0.10 0.15
0

20

40

60

80

100

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 19 / 27

Parametric bootstrapping, example, continued

Let’s assume that the data is Gaussian.
Let’s calculate the distribution of the
third data point.

Create a function which creates
new data for you, based on the
functional form that you are
assuming.

Create another function that
calculates the statistic that you’re
interested in, from some data.

Run many times, as with
non-parametric bootstrapping.

In [39]:

In [39]: from scipy.stats import norm as ssn

In [40]:

In [40]: def my third(data): return(np.sort(data)[2])

In [41]:

In [41]: def my data(data):

return(ssn.rvs(size = len(data),

loc = np.mean(data),

scale = np.sqrt(np.var(data))))

In [42]:

In [42]: thirds = [my third(my data(s1))

for i in range(1000)]

In [43]:

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 20 / 27

Parametric Bootstrapping, example, continued more

In [43]:

In [43]: plt.hist(thirds)

In [44]:

In [44]: np.percentile(thirds, [2.5, 97.5])

Out[44]: array([-0.14248356, -0.1021044])

In [45]:

You can use the ’percentile’ function to get
the 95% confidence interval.

0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09
0

50

100

150

200

250

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 21 / 27

Jackknifing

Another resampling technique is ’jackknifing’.

This is a special case of non-parametric bootstrapping.

Generally used to estimate the bias and variance of a particular statistic.

In this use-case, the statistic of interest repeatedly recalculated while leaving out one or
more different data points. The distribution of the statistic is then analysed.

Less computationally intensive than bootstrapping, since random numbers are left out.

Not as common as bootstrapping.

The ’bootstrap’ package contains functionality to perform jackknifing.

We won’t do an example of this, but you need to be aware that it exists.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 22 / 27

Permutation tests

Another resampling tool is the permutation test.

Permutation tests commonly appear when we are interested in the null hypothesis of no
difference between two treatment groups.

Like non-parametric bootstrapping, we build distributions by sampling from our existing
data set. In permutation tests, this is done by ”shuffling” the observations in the data
(move the data from group A to group B).

In this case, the permutation test exactly represents the inference process we are testing.

Why? Because the null hypothesis is that there’s no difference between the two groups.
Thus, if we change the outcome of a particular subject from category A to B, the
statistics shouldn’t change if the null hypothesis is true.

The two-sample t-test (parametric) and Mann-Whitney U test (non-parametric) are also
used for testing this null hypothesis.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 23 / 27

Permutation tests, continued

How does it work, exactly?

A full permutation test would consider every single possible permutation of the data
(shuffling group A and group B data).

This gets out of hand quickly, even for small data sets. Shuffling 20 data points would
mean

(20
10

)
combinations, (assuming two equally-sized groups) which is 184,756.

We instead perform an ”approximate permutation test” by randomly sampling from the
space of all possible permutations.

For each permutation, we calculate the statistic that we’re after, and thus get a
distribution. We then compare the distribution to the original value of the statistic
(usually the mean).

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 24 / 27

Permutation test, example

Consider again the breast cancer
data set.

Let’s separate the data into
malignant and benign
tumours.

First lets do a two-sample t
test.

We’ll use column 17 (the
”concavity” of the tumour).

In [45]: data = skd.load breast cancer()

In [46]:

In [46]: malignant = data[’data’][data[’target’] == 1,]

In [47]: benign = data[’data’][data[’target’] == 0,]

In [48]:

In [48]: import scipy.stats as ss

In [49]:

In [49]: ttest = ss.ttest ind(malignant[:,16],

benign[:,16])

In [50]:

In [50]: ttest.pvalue

Out[50]: 8.260176167970112e-10

In [51]:

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 25 / 27

Permutation test, example, continued

Let’s do a permutation test.

We use the ’mlxtend’ library (you may
need to install this).

The ’approximate’ flag indicates that
we’re not going to do every possible
permutation.

The ’num rounds’ flag indicates how
many permutations to perform.

It turns out that this package approximates
10−10 as zero.

In [51]:

In [51]: import mlxtend.evaluate as mlx

In [52]:

In [52]: mlx.permutation test(malignant[:,16],

benign[:,16],

method = ’approximate’,

num rounds = 2000)

Out[52]: 0.0004997501249375312

In [53]:

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 26 / 27

Summary

We’ve taken a look at resampling methods. Some things to remember:

Split your data into training, testing, and optionally, validation data sets. Train using the
training data, test the model on the test data.

Use cross-validation to determine the free parameters of your models!

Bootstrapping can be used to get statistics on calculated quantities.

Use non-parametric bootstrapping if you don’t know the distribution of your data. Use
parametric if you do.

If you’re doing your analysis in R, look into the ’boot’ package, which has a lot of
bootstrapping functionality built into it.

Permutation tests are a family of resampling techniques which perform tests on data, by
shuffling the data sets. They can be used to complement other tests.

Erik Spence (SciNet HPC Consortium) Resampling 17 March 2025 27 / 27

	Cross Validation
	Training versus Validation
	k-fold Cross Validation
	Cross Validation example

	Bootstrapping
	Nonparametric Bootstrapping
	Notes on Bootstrapping
	Parametric Bootstrapping

	Permutation Tests
	Example

