
Discrete Fourier Transforms

Ramses van Zon

PHY1610, Winter 2025

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 1 / 28

Fourier transform

In this lecture, we will discuss:

The Fourier transform,

The discrete Fourier transform

The fast Fourier transform

Examples using the FFTW library

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 2 / 28

Fourier transform
Let f be a function of a spatial variable x.

f(x) = e−|x|

Transform to a function f̂ of the
wavenumber k:

f̂(k) ∝
∫

f(x) e±i k x dx

f(x) = (1 + k2)−1

Inverse transformation:

f(x) ∝
∫

f̂(k) e∓i k x dk

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 3 / 28

Fourier transform

Fourier made the claim that any function can be expressed as a harmonic series.

The Fourier Transform is a mathematical expression of that.

Constitutes a linear basis transformation in function space.

Transforms from spatial to wavenumber, or time to frequency, etc.

Constants and signs are just convention.∗
∗ some restritions apply.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 4 / 28

Finite interval = periodicity
Imagine the function is stored numerically as n samples at x = j∆x.

Then the function lives on a finite x-interval [0, L) where L = n∆x.

For a finite interval, only discrete k values are needed, e.g.

f̂(k) ∝
∫

f(x) e±i k x dx ≡ f̂q for k =
2π

L
q

This is enough to reconstruct the inverse

f(x) ∝
∞∑

q=−∞
f̂(k(q)) e∓i k(q) x dx

k(q) is such that e±ik(q)x has period L,
so we can view the function f as periodic in x with period L.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 5 / 28

Discrete case
We only have the n discrete points j∆x.

The Fourier transform is invertible, so it must have the same number of points.

We’ll keep just q = 0 up to q = n − 1. Then:

fj ≡ f(j∆x) ∝
n−1∑
q=0

f̂(k(q)) e∓i k(q)j∆x dx =
n−1∑
q=0

f̂q e∓2πi q j dx

Higher q values coincide with lower fourier modes as far as x = j∆x is concerned.

But we have to alter how we compute f̂ ; the integral must become a sum:

f̂q =
n−1∑
j=0

fj e± i j ∆x k(q) =
n−1∑
j=0

fj e± 2πi j q/n

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 6 / 28

Discrete Fourier Transform (DFT)

C. F. Gauss

Given a set of n function values on a regular grid:

xj = j∆x; fj = f(j∆x)

Transform to n other values

f̂q =
n−1∑
j=0

fj e± 2πi j q/n

Easily back-transformed:

fj =
1
n

n−1∑
q=0

f̂q e∓ 2πi j q/n

Note: f̂−q = f̂n−q.

Note: Cannot resolve frequencies higher than the Nyquist frequency q = n/2
(k = π/∆x).

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 7 / 28

Slow Fourier transform

f̂q =
n−1∑
j=0

fj e± 2πi j q/n

Discrete fourier transform is a linear transformation.

In particular, it’s a matrix-vector multiplication.

Naively, costs O(n2). Slow!

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 8 / 28

Slow DFT
#include <complex>
#include <rarray>
#include <cmath>
using complex = std::complex<double>;

void fft_slow(rvector<complex>& f,
rvector<complex>& fhat,
bool inverse)

{
int n = f.size();
int sign = inverse?-1:1;
double v = sign*2*M_PI/n;
for (int q = 0; q < n; q++)
{

fhat[q] = 0.0;
for (int m = 0; m < n; m++) {

fhat[q] += complex(cos(v*q*m),sin(v*q*m))
* f[m];

}
}

}

The inverse left out the 1/n normalization; this is common in many implementations.
Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 9 / 28

Fast Fourier Transform (FFT)

Even Gauss realized O(n2) was too slow, and came up with a fast version.

This fast version was derived in partial form several times before and even after Gauss, because he’d
just written it in his diary in 1805 (published later).

Rediscovered (in general form) by Cooley and Tukey in 1965.

Basic idea

Write each n-point FT as a sum of two n
2 point FTs.

Do this recursively 2 log n times.

Each level requires ∼ n computations: O(n log n) instead of O(n2).

Could as easily divide into 3, 5, 7, . . . parts. In practice, nobody does.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 10 / 28

Fast Fourier Transform: How is it done?
Define ωn = e2πi/n.

Note that ω2
n = ωn/2.

DFT takes form of matrix-vector multiplication:

f̂q =
n−1∑
j=0

ωqj
n fj

With a bit of rewriting (assuming n is even):

f̂q =
n/2−1∑

j=0

ωqj
n/2 f2j︸ ︷︷ ︸

FT of even samples

+ ωq
n

n/2−1∑
j=0

ωqj
n/2 f2j+1︸ ︷︷ ︸

FT of odd samples

Repeat, until the lowest level (for n = 1, f̂ = f).

Note that a fair amount of shuffling is involved.
Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 11 / 28

Inverse DFT

Inverse DFT is similar to forward DFT, up to a normalization: almost just as fast.

fj =
1
n

n−1∑
q=0

f̂q e∓ 2πi j q/n

FFT allows quick back-and-forth between space and wavenumber domain, or time and frequency
domain.

Allows parts of the computation and/or analysis to be done in the most convenient or efficient
domain.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 12 / 28

Fast Fourier Transform: Already done!

We’ve said it before and we’ll say it again: Do not write your own: use existing libraries!

Why not write your own?

Because getting all the pieces right is tricky;

Getting it to compute fast requires intimate knowledge of how processors work and access memory;

Because there are libraries available.

Examples:
▶ FFTW3 (Faster Fourier Transform in the West, version 3)
▶ cuFFT
▶ Intel MKL
▶ IBM ESSL

Because you have better things to do.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 13 / 28

Example of using a library: FFTW
Previous version:
#include <complex>
#include <rarray>
#include <cmath>
using complex = std::complex<double>;

void fft_slow(rvector<complex>& f,
rvector<complex>& fhat,
bool inverse)

{
int n = f.size();
int sign = inverse?-1:1;
double v = sign*2*M_PI/n;
for (int q = 0; q < n; q++)
{

fhat[q] = 0.0;
for (int m = 0; m < n; m++) {

fhat[q] += complex(cos(v*q*m),sin(v*q*m))
* f[m];

}
}

}

FFTW version:
#include <complex>
#include <rarray>
#include <fftw3.h>
using complex = std::complex<double>;

void fft_fast(rvector<complex>& f,
rvector<complex>& fhat,
bool inverse)

{
int n = f.size();
int sign = inverse?FFTW_BACKWARD:FFTW_FORWARD;
fftw_plan p = fftw_plan_dft_1d(n,

(fftw_complex*)(f.data()),
(fftw_complex*)(fhat.data()),
sign,
FFTW_ESTIMATE);

fftw_execute(p);
fftw_destroy_plan(p);

}

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 14 / 28

Notes

Creates a plan first. This is a mandatory step for fftw.

An fftw_plan contains all information necessary to compute the transform, including the pointers to
the input and output arrays.

FFTW uses its own complex number type, completely compatible with C++’s complex numbers,
except C++ does not know that. So, casts.

Plans can be reused in the program, and even saved on disk!

When creating a plan, you can have FFTW measure the fastest way of computing dft’s of that size
(FFTW_MEASURE), instead of guessing (FFTW_ESTIMATE).

Link with -lfftw3 (for double precision).

For single precision, use fftwf_ functions and link with -lfftw3f. precision too.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 15 / 28

Example

Create a 1d input signal: a discretized sinc(x) = sin(x)/x with 16384 points on the interval
[-30:30].

Perform forward transform

Write to standard out

Compile, and linking to fftw3 library.

Continous FT of sinc(x) is the rectangle function:

rect(f) =
{

0.5 if ∥k∥ ≤ 1
0 if ∥k∥ > 1

up to a normalization.

Does it match?

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 16 / 28

Code for the working example
//sincfftw.cpp
#include <iostream>
#include <complex>
#include <rarray>
#include <fftw3.h>
using complex = std::complex<double>;
int main() {

const int n = 16384;
rvector<complex> f(n), fhat(n);
for (int i=0; i<n; i++) {

double x = 60*(i/double(n)-0.5); // x-range from -30 to 30
if (x!=0.0) f[i] = sin(x)/x; else f[i] = 1.0;

}
fftw_plan p = fftw_plan_dft_1d(n,

reinterpret_cast<fftw_complex*>(f.data()),
reinterpret_cast<fftw_complex*>(fhat.data()),
FFTW_FORWARD, FFTW_ESTIMATE);

fftw_execute(p);
fftw_destroy_plan(p);
for (int i=0; i<n; i++)

std::cout << f[i].real() << " " << fhat[i].real() << std::endl;
}

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 17 / 28

Compile, link, run, plot
$ module load gcc/13 rarray fftw/3 python/3
$ g++ -std=c++17 -c -O3 sincfftw.cpp -o sincfftw.o
$ g++ sincfftw.o -o sincfftw -lfftw3
$./sincfftw > output.dat
$ ipython --pylab

>>> data = genfromtxt('output.dat')
>>> plot(data[:,0])
>>> figure()
>>> plot(data[:,1])

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 18 / 28

Plots of the output, rewrapped

Pick the first and the last 30 points.
>>> x1=range(30)
>>> x2=range(len(data)-30,len(data))
>>> y1=data[x1,1]
>>> y2=data[x2,1]
>>> figure()
>>> plot(hstack((y2,y1)))

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 19 / 28

Undo phase factor due to shifting

>>> plot(hstack((y2,y1))*array([1,-1]*30)

We retrieved our rectangle function!

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 20 / 28

Multidimensional transforms
In principle a straighforward generalization:

Given a set of n × m function values on a regular grid:

fab = f(a∆x, b∆y)

Transform these to n other values f̂kl

f̂kl =
n−1∑
a=0

m−1∑
b=0

fab e± 2πi (a k+b l)/n

Easily back-transformed:

fab =
1

nm

n−1∑
k=0

m−1∑
l=0

f̂kl e∓ 2πi (a k+b l)/n

Negative frequencies: f−k,−l = fn−k,m−l.
Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 21 / 28

Multidimensional FFT

We could successive apply the FFT to each dimension

This may require transposes, can be expensive.

Alternatively, could apply FFT on rectangular patches.

Mostly should let the libraries deal with this.

FFT scaling still n log n.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 22 / 28

Symmetries for real data

All arrays were complex so far.

If input f is real, this can be exploited.

f∗
j = fj ↔ f̂k = f̂∗

n−k

Each complex number holds two real numbers, but for the input f we only need n real numbers.

If n is even, the transform f̂ has real f̂0 and f̂n/2, and the values of f̂k > n/2 can be derived
from the complex valued f̂0<k<n/2: again n real numbers need to be stored.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 23 / 28

Symmetries for real data

A different way of storing the result is in “half-complex storage’ ’. First, the n/2 real parts of
f̂0<k<n/2 are stored, then their imaginary parts in reversed order.

Seems odd, but means that the magnitude of the wave-numbers is like that for a
complex-to-complex transform.

These kind of implementation dependent storage patterns can be tricky, especially in higher
dimensions.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 24 / 28

Applications

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 25 / 28

Application of the Fourier transform

1 Signal processing, certainly.
2 Many equations become simpler in the fourier basis.

▶ Reason: exp(ik x) are eigenfunctions of the ∂/∂x operator.
▶ Partial diferential equation become algebraic ones, or ODEs.
▶ Thus avoids matrix operations.

3 Optimizing long range particle-particle interactions in N-body simulations and molecular dynamics.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 26 / 28

2. Solving diffusion equation with FFT

∂u

∂t
= κ

∂2u

∂x2

for u(x, t) on x ∈ [0, L], with boundary conditions u(0, t) = u(L, t) = 0, and u(x, 0) = f(x).

Write

u(x, t) =
∞∑

k=−∞

ûk(t)e2πikx/L

then the PDE becomes an ODE:

dûk

dt
= −κ

4π2k2

L2 ûk; with ûk(0) = f̂k.

Alternatively, one can first discretize the PDE, then take an FFT. This is numerically different.

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 27 / 28

3. Long-range particle interactions

Long-range interactions are those that cannot be cut off without seriously altering the physics.

Examples of a long range interactions include:
▶ Gravity
▶ Electrostatics

In N-body and MD simulations, the force computation is often the bottleneck.

Without a cut-off (as for short-range) interactions, we are left with a sum over interacting pairs, i.e.,
an or “Particle-Particle”, O(N2) method.

As we saw in the Molecular Dynamics lecture, we can use Particle-Mesh and solve part of the
interactions in fourier space; O(N log N)

Ramses van Zon Discrete Fourier Transforms PHY1610, Winter 2025 28 / 28

	Applications

