Measuring Performance

Ramses van Zon

PHY1610, Winter 2025

Ramses van Zon Measuring Performance PHY1610, Winter 2025 1/21

Measuring Performance a.k.a. Profiling

van Zon Measuri ing Performance PHY1610, Winter 2025

2/21

Profiling

e is a form of runtime application analysis that
measures a performance metric, e.g. the

memory or the duration of a program or part i Measure <\\\

thereof, the usage of particular instructions,
or the frequency and duration of function
calls.

| Find ‘ Make
e Like debuggers for finding bugs, profilers are bottlenecks % Mpmvemanks
evidence-based methods to find performance
problems.

e Most commonly, profiling information serves
to aid program optimization.

e We cannot improve what we don't measure!

Ramses van Zon Measuring Performance PHY1610, Winter 2025 3/21

Profiling

® Where in the program is time being spent?
e Find and focus in the ‘expensive’ parts.
e Don't waste time optimizing parts that don't matter.

e Find bottlenecks.

Ramses van Zon Measuring Performance

Two main ways of profiling

Tracing

Events happening during code execution are
logged.

* Need to know what events you want logged.

® Depending on how it's done, can slow down
code.

® Depending on the tool, may be hard to
interpret.

Sampling

At periodic intervals, the state of the system is
logged.

e Detects where program spends its time.
® Statistical; needs enough samples.

» May not detect time in system calls.

Ramses van Zon Measuring Performance PHY1610, Winter 2025 5/21

To instrument or not to instrument

Instrumentation Instrumentation-free
This refers to anything that changes the build No need to change the source code.
process.

May need to change how the program is built.

* Adding extra code to your source code to :
. May need to change how the program is run.

make profiling happen.

® Changing how to build the program.

* Changing how to execute the program.

In both cases, data is stored during runtime, and a program is needed afterward to display the results.

Ramses van Zon Measuring Performance PHY1610, Winter 2025 6/21

Instrumentation

e You can instrument regions of the code
e Simple, but incredibly useful
® Runs every time your code is run

e Can trivially see if changes make things better or worse

Ramses van Zon Measuring Performance

Tick tock example

// sumsins.cpp $ g+t+ -c -std=c++17 -03 sumsins.cpp
#include <cmath> $ gt+ -c -std=c++17 -03 ticktock.cc
#include <iostream> $ g++ sumsins.o ticktock.o -o sumsins
#include "ticktock.h" $./sumsins

int main() The sum of sin(i) for i=0..10M is 1.95589
{ To compute this took 0.1318 sec

TickTock stopwatch; // holds timing info

stopwatch.tick(); // starts timing This actually just uses the std: :chrono

// t]
dou;izp; i 0.0: standard C++ library under the hood, but offers
for (int i=0; i<=10000000; i++) a simpler way to time portions of code.
b += sin(i); . . .
// report git clone https://github.com /vanzonr/ticktock

std::cout << "The sum of sin(i) for i=0..10M"
<< " is " << b << "\n";
stopwatch.tock("To compute this took");

Ramses van Zon Measuring Performance PHY1610, Winter 2025 8/21

https://github.com/vanzonr/ticktock

Instrumentation-free profiling with OS utilities

Let's start by looking at some utilities provided by the Linux OS that we can use for profiling.
e time
Measure duration of the whole run of an application
® top, htop
Monitor CPU, memory and |/O utilization while the application is running.

® ps, vmstat, free
(One-time) information on a running processes

Ramses van Zon Measuring Performance PHY1610, Winter 2025 9/21

Time : timing the whole program

e time is a built-in command in the bash shell. Suppose we have an application wavedid to be

. run as ./waveld longwaveparams.txt.
e Very simple to use. It can be run from the 4 8 P

Linux command line on any command. We can just prepend time to the command:

$ time ./waveld longwaveparams.txt
[program output]

real Om16.716s # Elapsed "walltime"
user Om16.105s # Actual user time (of all cores)
sys Om0.252s # System/0S time, e.g. I/0

e In a serial program:

real = user + sys

® |n parallel, at most:
user = nprocs x real

e Can be run on tests to identify performance regressions

Ramses van Zon Measuring Performance PHY1610, Winter 2025 10/21

Top: Watching a program run

® Run a command in one terminal.

e Run top or in another terminal on the same node (type ‘q’ to exit).
top - 20:26:34 up 6 days, 2:52, 8 users, 1load average: 0.47, 0.81, 1.06
Tasks: 380 total, 2 running, 378 sleeping, 0 stopped, 0 zombie

%Cpu(s): 6.5 us, 0.6 sy, 0.0 ni, 92.7 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 65945184 total, 52059848 free, 1759912 used, 12125424 buff/cache

KiB Swap: 0 total, 0 free, 0 used. 57586756 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
12241 rzon 20 0 104376 8696 6228 R 97.7 0.0 0:05.96 waveld
12244 rzon 20 0 173104 2656 1696 R 0.3 0.0 0:00.02 top
6199 rzon 20 0 186868 2760 1100 S 0.0 0.0 0:01.09 sshd
6200 rzon 20 0 127364 3364 1816 S 0.0 0.0 0:00.10 bash

® Refreshes every 3 seconds.

e htop is an alternative to top with a nicer default display.

Pro-tip: type “zxcVm1t0" after starting top for a more insightful display.

Ramses van Zon Measuring Performance

Sampling

Concept

® As the program executes, every so often (~ 100ms) a timer goes, off, and the current location of
execution is recorded
® Shows where time is being spent

Benefits:

o Allow us to get finer-grained (more detailed) information about where time is being spent
* Very low overhead
#» No instrumentation, i.e., no code modification

Disadvantages:

® Requires sufficiently long runtime to get enough samples.
e Does not tell us why the code was there.

Ramses van Zon Measuring Performance

An effective profiler sampler : gprof

e gprof is a profiler that works by adding the options -pg -g to g++.
(both in compilations and linking).

® Rebuild and (re)run the application.

e The code will then sample itself when it is run.

e In addition, functions calls (if not inlined) will be counted.

e During the run, this raw information is stored in a file called “gmon.out” .
e gmon.out needs to be analysed by the gprof command.

e The gprof command takes at least two arguments: the executable and the gmon.out file name.
This will show how much of its time the program spend in each function.

e |t also can take an option —-1ine argument, to show line-by-line timings.

Ramses van Zon Measuring Performance PHY1610, Winter 2025 13/21

Gprof example

$ module load gcc/12.3 rarray/2.8.0
$ make
g++ -c -pg -g -0g -std=c++17 -Wall -Wfatal-errors -o waveld.o waveld.cpp

g++ -pg -g -0g -o waveld waveld.o parameters.o ...
$./waveld longwaveparams.txt

Note that the Makefile needs to be changed to add the -pg flags.
Optimization flags also needs to be changed, particularly for line-resolve timing.

e -0Og is usually safe.

® To use -02 or -03 but you may need to disable some optimizations, e.g.
-fno-inline-functions-called-once -fno-inline-small-functions
-fno-omit-frame-pointer

Process the results with a command like:

e gprof --line ./waveld gmon.out | less

Ramses van Zon Measuring Performance

Output of gprof —line

$ gprof --line ./waveld gmon.out | less
Flat profile:

Each sample counts as 0.01 seconds.
cumulative
seconds

)

time

32.
23.
MO
.52
.18
.18
.18
.45
.87
.73
.58
.58
.44
02
.15
.15
.15
.00

=
(o}

OO O0OO0OO0OO0OO0OO0OOOFrNNMNOGM

20
50

42
44
%)
42
49

:50

51

141

49

148

47

©® 0 ©® 0 0 o 6

(¢l

4
4
4
4
4
4
4
4
4
4
4
)

self self total
seconds calls Ts/call Ts/call name
1.11 1.11 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:
1.92 0.81 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:
2.51 0.59 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:
3.04 0.54 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:
3.12 0.08 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:
3.19 0.08 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp
3.27 0.08 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:
3.32 0.05 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp
3.35 0.03 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:
&8 0.03 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp
3.39 0.02 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:
3.41 0.02 ra::shared_shape<double, 1>::size() const (rarray:765 @ 403c32
3.43 0.02 std: :ostream: :operator<<(double) (ostream:221 @ 403c12)
3.44 0.01 std: :ostream: :operator<<(double) (ostream:221 @ 403beb)
3.44 0.01 output_snapshot (double, Waves&, std::basic_ofstream<char, stdjf:
3.45 0.01 std::ostream: :operator<<(double) (ostream:221 @ 403c06)
3.45 0.01 std::basic_ostream<char, std::char_traits<char> >& std::opera
3.45 0.00 20 0.00 0.00 ra::shared_shape<double, 1>::decref() (rarray:868 @ 4031f0)
Ramses van Zon Measuring Performance PHY1610, Winter 2025

15/21

Other ways to run gprof

e gprof ./waveld gmon.out
Gives profile by function

e gprof -A --all-lines --line --annotated-source=evolve.cpp ./waveld gmon.out
Annotates the lines with the number of times they are hit (not real time).

e gprof -q ./waveld gmon.out
Shows the call graph, ordered by cumulative time.

Caveats

® gprof measures time spent in your code. |t can miss time spent in library calls.
e gprof --line orders by self-time, but often the cumulative time is more important.

e gprof -A --all-lines --line ./waveld gmon.out

Ramses van Zon Measuring Performance

Memory Profiling

Most profilers use time or events as metrics, but what about memory?
Valgrind
* Massif: Memory Heap Profiler
valgrind --tool=massif ./mycode
ms_print massif.out
Cachegrind: Cache Profiler
valgrind --tool=cachegrind ./mycode

Kcachegrind (gui frontend for cachegrind)

Ramses van Zon Measuring Performance

https://valgrind.org

Linaro Forge

Linaro Forge (formerly ARM Forge) is a commercial suite of developer tools: a debugger DDT, a profiler

MAP and a performance report utility (perf-report).
Get them on the Teach cluster or on Niagara with:
module load ddt-cpu

Performance Reports

o Compile with debugging on, ie -g (but not -pg)
e perf-report ./waveld longwaveparameters.txt
® Generates .txt and .html files

MAP

o Compile with debugging on, ie -g (but not -pg)
e map or map ./waveld longwaveparameters.txt
e Can run without a gui with the ——profile parameter.

Ramses van Zon Measuring Performance

PHY1610, Winter 2025

Ramses van Zon

This is average; check

ally bad
r optimizati

ent in MPI calls, thi

CPU time: A breakdown of the MPI time:

A breakdown of how multiple threa

PHY1610, Winter 2025

19/21

Linaro MAP (Forge)

waveld_1p_1n_2022-02-07_22-34.map - Arm MAP - Arm Forge 20.1.3 (on teach01.scinet.local) -

a x
File Edit View Metrics Window Help

Profiled: waveld on 1 process, 1 node Sampled from: Mon. Feb. 7 22:34:29 2022 for 16.1s

Hide Metrics...
Main thread activity

CPU floating-point
19.4 %

Memory usage
3l.1ms

22:34:29-22:34:45 (16.095s): Main thread compute 93.4 %, File /O %, Sleeping % Zoom &1

= waveld.cpp X " output.cpp X Time spent on line 60

// Output wave signal to file
if ((s+l)%derivs.nper == 0) {
output snapshot(s*derivs.dt, w, fout);

Executing instructions
nc_output_snapshot(s*derivs.dt, w, ncout); Calling functions
i

=+ [c©
3 | 61

Breakdown of the 73.8% time
spent on this line:

Input/Output Project Files
Main Thread Stacks
Total core time

Main Thread Stacks | Functions

“ Function(s} on line

waveld [program]
main
output snapshot{double, WaveFields

» advance wave(WaveFields&, InputPara...

» netCDF::NcFile::~NcFile()

» output start{inputParameters const&, ...

» output finalize(std: basic_ofstream<ch
b 3 others

Source

int main(int argc, char* argvll)
output snapshot(s*der:

advance wave(w, params, derivs);
nc_output finalize(ncout);

output start(params, derivs, fout);
output finalize(fout);

Position
waveld.cpp:16

waveld.cpp:56
waveld.cpp:69
waveld.cpp:34
waveld.cpp:66

Profiling Summary

e Two main approches: tracing vs sampling

e Put your own timers in the code in/around important sections, find out where time is being spent.
» if something changes, you'll know in what section

e gprof is easy to use and excellent at finding where most of the time in your code is spent.

e Know the ‘expensive’ parts of your code and spend your programming time accordingly.

e valgrind is good for all things memory; performance, cache, and usage.

e Linaro Forge (with MAP, DDT, perf-report) is a great tool, if you have it available use it!

® The “write less code" advice applies here too: use already optimized libraries.

Ramses van Zon Measuring Performance PHY1610, Winter 2025

	Measuring Performance a.k.a. Profiling

