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Today's class

Today we will discuss two packages that are often considered as the basis of many scientific and
numerical computing tasks in python:

@ NumPy - the fundamental package for scientific computing with Python, containing a
powerful N-dimensional array object, and useful linear algebra, Fourier transform, and
random number capabilities.

@ SciPy - provides many user-friendly and efficient numerical routines such as routines for
numerical integration and optimization.

To use NumPy and SciPy with Miniforge, you need to install them first:

conda install numpy scipy

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 2/26



Multidimensional lists in Python

The element of a list in Python can be of any type, including a list, that is we can create a list
of lists or multidimensional list. For example, this is how you can create a Vandermonde matrix:

>>> vander matrix = [[1.0, 1.0, 1.0], [1.0, 2.0, 4.0], [1.0, 3.0, 9.0]]

Here we have a three-element list where each element consists of a three-element list.

>>> vander_matrix[0]
[1.0, 1.0, 1.0]

>>> vander matrix[1]
[1.0, 2.0, 4.0]

>>> vander _matrix[0] [0]
1.0

>>> vander_matrix[1] [1]
2.0

Remember that list indices in Python start at 0.
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NumPy arrays

The NumPy array is similar to a list but where all the elements of the list are of the same type.

NumPy has a number of functions for creating arrays. The first of these, the array function,
converts a list to an array.
>>> import numpy
>>> vander_matrix
[f1.0, 1.0, 1.01, [1.0, 2.0, 4.0], [1.0, 3.0, 9.0]]
>>> vander_matrix_numpy = numpy.array(vander_matrix)
>>> vander_matrix_numpy
array([[1., 1., 1.1,
[1., 2., 4.7,
[1., 3., 9.11)

Remember to import numpy module in your script.
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NumPy arrays

The second way arrays can be created is using the NumPy linspace function. It creates an
array of N evenly spaced points between a starting point and an ending point. The form of the
function is 1inspace(start, stop, N). If the third argument N is omitted, then N = 50.

>>> numpy.linspace(0, 3, 7)
array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. 1)

The third way arrays can be created is using the NumPy arange function. The form of the
function is arange (start, stop, step). If the third argument is omitted step = 1. If the
first and third arguments are omitted, then start = 0 and step = 1.

>>> numpy.arange(0,1,0.1)

array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
>>> numpy.arange (10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
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NumPy arrays

A fourth way to create an array is with the zeros and ones functions which create arrays where
all the elements are either zeros or ones.

>>> numpy .zeros (5)
array([0., 0., 0., 0., 0.1)
>>> numpy .ones (5)
array([1., 1., 1., 1., 1.1)

Very often you find that instead of typing the name of the module numpy, it is imported with a
short alias np.

>>> import numpy as np
>>> np.ones(3)
array([1., 1., 1.1)
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Mathematical operations with arrays
It is very easy to perform mathematical operations on every element in the array.

>>> vander_matrix_numpy
array([[1., 1., 1.7,
[1., 2., 4.1,
(1., 3., 9.11)
>>> vander_matrix_numpy * 2
array([[ 2., 2., 2.1,
[2., 4., 8.1,
[2., 6., 18.1D

This works not only for multiplication, but for any other mathematical operation.

>>> vander_matrix_numpy - 1
array([[0., 0., 0.7,

[0., 1., 3.1,

0., 2., 8.11)
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Mathematical operations with arrays

Multiplication of two arrays is performed element-wise.

>>> vander_matrix_numpy * vander_matrix_numpy
array([[ 1., 1., 1.1,

[1., 4., 16.],

[1., 9., 81.1])

To calculate the dot product of two arrays use function np.dot.

>>> np.dot(vander_matrix_numpy, vander_matrix_numpy)
array([[ 3., 6., 14.],

[ 7., 17., 45.],

[13., 34., 94.11)

These kinds of operations with arrays are called vectorized operations because the entire array,
or “vector”, is processed as a unit. Vectorized operations are much faster than processing each
element of arrays one by one.

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 8/26



Multidimensional arrays

We can create a multidimensional array by applying array function to the multidimensional list

>>> numpy.array([[1,2,3,4,5],[6,7,8,9,10]11)
array([[ 1, 2, 3, 4, 5],
[6, 7, 8, 9, 1011)

To create a multidimensional array using the zeros and ones functions we need to specify
number of rows and number of columns. In NumPy rows are always specified first.

>>> numpy.ones((3, 4))

array([[1., 1., 1., 1.7,
1., 1., 1., 1.1,
(1., 1., 1., 1.11)

Notice the way we specified the number of rows and columns: (3, 4). This structure is called
tuple. Tuples are very similar to lists, but the main difference between them is that the tuples
cannot be changed unlike lists.
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Array indexing
NumPy offers several ways to index arrays.

>>> all_data = numpy.arange(10, 0, -1)

>>> all_data

array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
>>> all _datal0]

10

>>> all_datal-1] # supports negative indices

1

>>> all_datal[2:]

array([8, 7, 6, 5, 4, 3, 2, 11)

>>> all_datal:2]

array([10, 9])

>>> all_datal0:2] # slice items between indexes
array([10, 9])

While slicing between indices, the start index is included and the stop index is not included.
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Boolean indexing

Frequently we want to select or modify only the elements of an array satisfying some condition
(fancy indexing).

>>> all_data

array([10, 9, 8, 7, 6, 5, 4, 3, 2, 11

>>> (all_data <= 7) & (all_data >= 5)

array([False, False, False, True, True, True, False, False, False, False])
>>> all data[(all_data <= 7) & (all_data >= 5)]

array([7, 6, 5])

>>> even_nums = all_data[(all_data % 2) == 0]

>>> even_nums

array([10, 8, 6, 4, 21)

The "%" symbol is the modulo operator.
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Multidimensional slices

You can slice multidimensional arrays in a similar way.

>>> vander_matrix_numpy
array([[1., 1., 1.7,

[1., 2., 4.1,

[1., 3., 9.1
>>> vander_matrix_numpy[1,1]
2.0
>>> vander_matrix_numpy[2, :]
array([1., 3., 9.1)
>>> vander_matrix_numpy[1:,1:]
array([[2., 4.7,

[3., 9.1
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Shape and reshape

The shape property returns a tuple of array’s dimensions and can be used to change the
dimensions of an array.

>>> seq_array = numpy.arange(1l,11)

>>> seq_array

array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> seq_array.shape

(10,)

Here the shape (10,) means the array is indexed by a single index which runs from 0 to 9.

NumPy allows you to modify the shape of an array once it already exists. The reshape function
gives a new shape to an array without changing the data.

>>> seq_array2d = seq_array.reshape((2,5))
>>> seq_array2d
array([[ 1, 2, 3, 4, 5],
(6, 7, 8, 9, 10]11)
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Shape and reshape

Reshaping array doesn’t change the data in the memory. Instead, it creates a new view that
describes a different way to interpret the data.

The shape of an multidimensional array is a tuple of its dimensions where first element of the
tuple represents the number of rows and the second is the number of columns.

>>> seq_array2d

array([[ 1, 2, 3, 4, 5],
(e, 7, 8, 9, 1011)

>>> seq_array2d.shape

(2, 5)
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Shape and reshape

Specifying -1 as one of the dimensions while reshaping, forces NumPy to calculate this
dimension based on the total amount of elements in the array and already specified dimensions.

>>> seq_array2d.reshape((5,-1))
array([[ 1, 2],

[ 3, 4],
[ 5, 6],
[7, 81,
[ 9, 1011)

>>> seq_array2d.reshape((3,-1))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot reshape array of size 10 into shape (3,newaxis)
>>> numpy.arange(9) .reshape((-1,3))
array([[0, 1, 2],
(3, 4, 5],

(6, 7, 811)
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The 1inalg submodule

The 1inalg submodule of SciPy contains useful functions for matrix algebra.

@ Typical matrix functions: inv, det, norm, etc.

@ More advanced functions: eig, SVD, cholesky, etc.

@ Both NumPy and SciPy have a 1inalg module. Use SciPy, because it is compiled with
optimized BLAS/LAPACK support.

>>> import numpy

>>> import scipy

>>> from scipy import linalg

>>> A = numpy.array([[1,2,3], [3,4,5], [1,1,2]11)

>>> linalg.det (A)

-2.0

>>> scipy.dot(A, linalg.inv(A))

array([[ 1.00000000e+00, 2.22044605e-16, -2.22044605e-16],
[ 1.66533454e-16, 1.00000000e+00, -6.66133815e-16],
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+0011)
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Solving systems of equations

The solve function in the linalg module is used to solve the system

>>> A
array([[1, 2, 3],
[3, 4, 5],
[1, 1, 211
>>> b = numpy.array([3, 4, 2])
>>> b

array([3, 4, 21)

>>> x = linalg.solve(A, b)
>>> x

array([-0.5, -0.5, 1.5])
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Statistics

SciPy contains all of the statistical functions that you'll probably ever need.
@ The scipy.stats module is based around the idea of the random variable type.

@ A whole variety of standard distributions are available:

» Continuous distributions: Normal, Maxwell, Cauchy, Chi-squared, Gumbel Left-scewed, Gilbrat,
Nakagami, etc.

» Discrete distributions: Poisson, Binomial, Geometric, Bernoulli, etc.

@ The random variables have all of the statistical properties of the distributions built into
them already: cdf, pdf, mean, variance, moments, etc.
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Statistics

Let us create a normally distributed random variable with the mean of 1.0 and the standard
deviation of 0.5.

>>> from scipy import stats
>>> x = stats.norm(l, 0.5)
>>> x.mean()

1.0

>>> x.median()

1.0

>>> x.std()

0.5

>>> x.var()

0.25
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Statistics

We can evaluate the probability distribution function, the cumulative distribution function, etc.,

using the pdf, cdf, etc. These functions could take a value, or an array of values, where the
function will be evaluated.

>>> x.pdf ([0, 1, 2])

array([0.10798193, 0.79788456, 0.10798193])
>>> x.cdf ([0, 1 ,2]1)

array([0.02275013, 0.5 , 0.97724987])

The interval method can be used to compute the lower and upper values of x such that a
given percentage of the probability distribution falls within the interval (lower, upper). This
method is useful for computing confidence intervals

>>> x.interval(0.95)

(0.020018007729972975, 1.979981992270027)
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Visualization

There are a number of high-quality visualization packages available in Python

matplotlib focuses on generating publication-quality plots
seaborn targets statistical data analysis

ggplot is based on the famous R package

Plotly and Bokeh focus on interactivity

and others
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Installing Matplotlib

To install matplotlib package run the following command in your terminal

$ pip install matplotlib

If you are using Miniforge you can also install matplotlib using conda package manager:

$ conda install matplotlib

matplotlib is imported using the following command

>>> import matplotlib.pyplot as plt

Also import numpy as it is frequently used together with matplotlib

>>> import numpy as np
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Simple plot in matplotlib

import matplotlib.pyplot as plt Simple Plot

81 — linear

import numpy as np —— quadratic

74 —— cubic

x = np.linspace(0, 2, 100)

plt.plot(x, x, label='linear') 24
plt.plot(x, x**2, label='quadratic') 31
plt.plot(x, x**3, label='cubic') 2
plt.xlabel('x label') 1
plt.ylabel('y label') o
plt.title("Simple Plot") 000 025 050 075 1.00 125 150 175  2.00

x label

plt.legend()
To save your plot use the command:

plt.show() plt.savefig(filename)
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Statistics

We can use matplotlib to visualize the distributions. In the histogram we use density=True
to display a probability density, i.e., the area (or integral) under the histogram will sum to 1.

import numpy
from scipy import stats rod — vor
import matplotlib.pyplot as plt = Sampes
x = stats.norm(1l, 0.5) 081
conf_interval = x.interval(0.999)
x_conf = numpy.linspace(
conf_interval[0], conf_intervall[l]) 041
plt.hist(x.rvs(size=1000), density=True,
bins=41, alpha=0.5, label="Samples")
plt.plot(x_conf,x.pdf (x_conf),label="PDF") o
plt.plot(x_conf,x.cdf (x_conf),label="CDF")
plt.legend ()
plt.show()
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