NumPy, SciPy and Visualization
Quantitative Applications for Data Analysis

Alexey Fedoseev

March 11, 2025

Physical & Environmental Sciences
UIXIVERSITY OF TORONTO

SCARBOROUGH

Alexey Fedoseev NumPy, SciPy and Visualization

Today's class

Today we will discuss two packages that are often considered as the basis of many scientific and
numerical computing tasks in python:

@ NumPy - the fundamental package for scientific computing with Python, containing a
powerful N-dimensional array object, and useful linear algebra, Fourier transform, and
random number capabilities.

@ SciPy - provides many user-friendly and efficient numerical routines such as routines for
numerical integration and optimization.

To use NumPy and SciPy with Miniforge, you need to install them first:

conda install numpy scipy

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 2/26

Multidimensional lists in Python

The element of a list in Python can be of any type, including a list, that is we can create a list
of lists or multidimensional list. For example, this is how you can create a Vandermonde matrix:

>>> vander matrix = [[1.0, 1.0, 1.0], [1.0, 2.0, 4.0], [1.0, 3.0, 9.0]]

Here we have a three-element list where each element consists of a three-element list.

>>> vander_matrix[0]
[1.0, 1.0, 1.0]

>>> vander matrix[1]
[1.0, 2.0, 4.0]

>>> vander _matrix[0] [0]
1.0

>>> vander_matrix[1] [1]
2.0

Remember that list indices in Python start at 0.

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 3/26

NumPy arrays

The NumPy array is similar to a list but where all the elements of the list are of the same type.

NumPy has a number of functions for creating arrays. The first of these, the array function,
converts a list to an array.
>>> import numpy
>>> vander_matrix
[f1.0, 1.0, 1.01, [1.0, 2.0, 4.0], [1.0, 3.0, 9.0]]
>>> vander_matrix_numpy = numpy.array(vander_matrix)
>>> vander_matrix_numpy
array([[1., 1., 1.1,
[1., 2., 4.7,
[1., 3., 9.11)

Remember to import numpy module in your script.

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 4/26

NumPy arrays

The second way arrays can be created is using the NumPy linspace function. It creates an
array of N evenly spaced points between a starting point and an ending point. The form of the
function is 1inspace(start, stop, N). If the third argument N is omitted, then N = 50.

>>> numpy.linspace(0, 3, 7)
array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. 1)

The third way arrays can be created is using the NumPy arange function. The form of the
function is arange (start, stop, step). If the third argument is omitted step = 1. If the
first and third arguments are omitted, then start = 0 and step = 1.

>>> numpy.arange(0,1,0.1)

array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
>>> numpy.arange (10)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 5/26

NumPy arrays

A fourth way to create an array is with the zeros and ones functions which create arrays where
all the elements are either zeros or ones.

>>> numpy .zeros (5)
array([0., 0., 0., 0., 0.1)
>>> numpy .ones (5)
array([1., 1., 1., 1., 1.1)

Very often you find that instead of typing the name of the module numpy, it is imported with a
short alias np.

>>> import numpy as np
>>> np.ones(3)
array([1., 1., 1.1)

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 6/26

Mathematical operations with arrays
It is very easy to perform mathematical operations on every element in the array.

>>> vander_matrix_numpy
array([[1., 1., 1.7,
[1., 2., 4.1,
(1., 3., 9.11)
>>> vander_matrix_numpy * 2
array([[2., 2., 2.1,
[2., 4., 8.1,
[2., 6., 18.1D

This works not only for multiplication, but for any other mathematical operation.

>>> vander_matrix_numpy - 1
array([[0., 0., 0.7,

[0., 1., 3.1,

0., 2., 8.11)

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 7/26

Mathematical operations with arrays

Multiplication of two arrays is performed element-wise.

>>> vander_matrix_numpy * vander_matrix_numpy
array([[1., 1., 1.1,

[1., 4., 16.],

[1., 9., 81.1])

To calculate the dot product of two arrays use function np.dot.

>>> np.dot(vander_matrix_numpy, vander_matrix_numpy)
array([[3., 6., 14.],

[7., 17., 45.],

[13., 34., 94.11)

These kinds of operations with arrays are called vectorized operations because the entire array,
or “vector”, is processed as a unit. Vectorized operations are much faster than processing each
element of arrays one by one.

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 8/26

Multidimensional arrays

We can create a multidimensional array by applying array function to the multidimensional list

>>> numpy.array([[1,2,3,4,5],[6,7,8,9,10]11)
array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 1011)

To create a multidimensional array using the zeros and ones functions we need to specify
number of rows and number of columns. In NumPy rows are always specified first.

>>> numpy.ones((3, 4))

array([[1., 1., 1., 1.7,
1., 1., 1., 1.1,
(1., 1., 1., 1.11)

Notice the way we specified the number of rows and columns: (3, 4). This structure is called
tuple. Tuples are very similar to lists, but the main difference between them is that the tuples
cannot be changed unlike lists.

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 9/26

Array indexing
NumPy offers several ways to index arrays.

>>> all_data = numpy.arange(10, 0, -1)

>>> all_data

array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
>>> all _datal0]

10

>>> all_datal-1] # supports negative indices

1

>>> all_datal[2:]

array([8, 7, 6, 5, 4, 3, 2, 11)

>>> all_datal:2]

array([10, 9])

>>> all_datal0:2] # slice items between indexes
array([10, 9])

While slicing between indices, the start index is included and the stop index is not included.

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 10/26

Boolean indexing

Frequently we want to select or modify only the elements of an array satisfying some condition
(fancy indexing).

>>> all_data

array([10, 9, 8, 7, 6, 5, 4, 3, 2, 11

>>> (all_data <= 7) & (all_data >= 5)

array([False, False, False, True, True, True, False, False, False, False])
>>> all data[(all_data <= 7) & (all_data >= 5)]

array([7, 6, 5])

>>> even_nums = all_data[(all_data % 2) == 0]

>>> even_nums

array([10, 8, 6, 4, 21)

The "%" symbol is the modulo operator.

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 11/26

Multidimensional slices

You can slice multidimensional arrays in a similar way.

>>> vander_matrix_numpy
array([[1., 1., 1.7,

[1., 2., 4.1,

[1., 3., 9.1
>>> vander_matrix_numpy[1,1]
2.0
>>> vander_matrix_numpy[2, :]
array([1., 3., 9.1)
>>> vander_matrix_numpy[1:,1:]
array([[2., 4.7,

[3., 9.1

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 12/26

Shape and reshape

The shape property returns a tuple of array’s dimensions and can be used to change the
dimensions of an array.

>>> seq_array = numpy.arange(1l,11)

>>> seq_array

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> seq_array.shape

(10,)

Here the shape (10,) means the array is indexed by a single index which runs from 0 to 9.

NumPy allows you to modify the shape of an array once it already exists. The reshape function
gives a new shape to an array without changing the data.

>>> seq_array2d = seq_array.reshape((2,5))
>>> seq_array2d
array([[1, 2, 3, 4, 5],
(6, 7, 8, 9, 10]11)
March 11, 2025 13/26

Shape and reshape

Reshaping array doesn’t change the data in the memory. Instead, it creates a new view that
describes a different way to interpret the data.

The shape of an multidimensional array is a tuple of its dimensions where first element of the
tuple represents the number of rows and the second is the number of columns.

>>> seq_array2d

array([[1, 2, 3, 4, 5],
(e, 7, 8, 9, 1011)

>>> seq_array2d.shape

(2, 5)

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 14 /26

Shape and reshape

Specifying -1 as one of the dimensions while reshaping, forces NumPy to calculate this
dimension based on the total amount of elements in the array and already specified dimensions.

>>> seq_array2d.reshape((5,-1))
array([[1, 2],

[3, 4],
[5, 6],
[7, 81,
[9, 1011)

>>> seq_array2d.reshape((3,-1))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot reshape array of size 10 into shape (3,newaxis)
>>> numpy.arange(9) .reshape((-1,3))
array([[0, 1, 2],
(3, 4, 5],

(6, 7, 811)
Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 15 /26

The 1inalg submodule

The 1inalg submodule of SciPy contains useful functions for matrix algebra.

@ Typical matrix functions: inv, det, norm, etc.

@ More advanced functions: eig, SVD, cholesky, etc.

@ Both NumPy and SciPy have a 1inalg module. Use SciPy, because it is compiled with
optimized BLAS/LAPACK support.

>>> import numpy

>>> import scipy

>>> from scipy import linalg

>>> A = numpy.array([[1,2,3], [3,4,5], [1,1,2]11)

>>> linalg.det (A)

-2.0

>>> scipy.dot(A, linalg.inv(A))

array([[1.00000000e+00, 2.22044605e-16, -2.22044605e-16],
[1.66533454e-16, 1.00000000e+00, -6.66133815e-16],
[0.00000000e+00, 0.00000000e+00, 1.00000000e+0011)

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 16 /26

Solving systems of equations

The solve function in the linalg module is used to solve the system

>>> A
array([[1, 2, 3],
[3, 4, 5],
[1, 1, 211
>>> b = numpy.array([3, 4, 2])
>>> b

array([3, 4, 21)

>>> x = linalg.solve(A, b)
>>> x

array([-0.5, -0.5, 1.5])

Alexey Fedoseev NumPy, SciPy and Visualization

of equations Ax = b.

-0.5

1.5

March 11, 2025

N W

17 /26

Statistics

SciPy contains all of the statistical functions that you'll probably ever need.
@ The scipy.stats module is based around the idea of the random variable type.

@ A whole variety of standard distributions are available:

» Continuous distributions: Normal, Maxwell, Cauchy, Chi-squared, Gumbel Left-scewed, Gilbrat,
Nakagami, etc.

» Discrete distributions: Poisson, Binomial, Geometric, Bernoulli, etc.

@ The random variables have all of the statistical properties of the distributions built into
them already: cdf, pdf, mean, variance, moments, etc.

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 18 /26

Statistics

Let us create a normally distributed random variable with the mean of 1.0 and the standard
deviation of 0.5.

>>> from scipy import stats
>>> x = stats.norm(l, 0.5)
>>> x.mean()

1.0

>>> x.median()

1.0

>>> x.std()

0.5

>>> x.var()

0.25

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 19/26

Statistics

We can evaluate the probability distribution function, the cumulative distribution function, etc.,

using the pdf, cdf, etc. These functions could take a value, or an array of values, where the
function will be evaluated.

>>> x.pdf ([0, 1, 2])

array([0.10798193, 0.79788456, 0.10798193])
>>> x.cdf ([0, 1 ,2]1)

array([0.02275013, 0.5 , 0.97724987])

The interval method can be used to compute the lower and upper values of x such that a
given percentage of the probability distribution falls within the interval (lower, upper). This
method is useful for computing confidence intervals

>>> x.interval(0.95)

(0.020018007729972975, 1.979981992270027)

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 20/26

Visualization

There are a number of high-quality visualization packages available in Python

matplotlib focuses on generating publication-quality plots
seaborn targets statistical data analysis

ggplot is based on the famous R package

Plotly and Bokeh focus on interactivity

and others

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 21/26

Installing Matplotlib

To install matplotlib package run the following command in your terminal

$ pip install matplotlib

If you are using Miniforge you can also install matplotlib using conda package manager:

$ conda install matplotlib

matplotlib is imported using the following command

>>> import matplotlib.pyplot as plt

Also import numpy as it is frequently used together with matplotlib

>>> import numpy as np

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 22/26

Simple plot in matplotlib

import matplotlib.pyplot as plt Simple Plot

81 — linear

import numpy as np —— quadratic

74 —— cubic

x = np.linspace(0, 2, 100)

plt.plot(x, x, label='linear') 24
plt.plot(x, x**2, label='quadratic') 31
plt.plot(x, x**3, label='cubic') 2
plt.xlabel('x label') 1
plt.ylabel('y label') o
plt.title("Simple Plot") 000 025 050 075 1.00 125 150 175 2.00

x label

plt.legend()
To save your plot use the command:

plt.show() plt.savefig(filename)

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 23/26

Q Ana
J
Major tick \

Legend
Minor tick °
(
5 D)
| %
Major tick label Grid
% A
b1
2
~ 00
b
o0
Markers

(scatter plot)

Figure Line
4 Axes (line plot)

Spines

0 N T T
° oz.@ns 1 125 1.50

Minor tick label

Alexey Fedoseev NumPy, SciPy and Visualization

March 11, 2025

24 /26

Statistics

We can use matplotlib to visualize the distributions. In the histogram we use density=True
to display a probability density, i.e., the area (or integral) under the histogram will sum to 1.

import numpy
from scipy import stats rod — vor
import matplotlib.pyplot as plt = Sampes
x = stats.norm(1l, 0.5) 081
conf_interval = x.interval(0.999)
x_conf = numpy.linspace(
conf_interval[0], conf_intervall[l]) 041
plt.hist(x.rvs(size=1000), density=True,
bins=41, alpha=0.5, label="Samples")
plt.plot(x_conf,x.pdf (x_conf),label="PDF") o
plt.plot(x_conf,x.cdf (x_conf),label="CDF")
plt.legend ()
plt.show()

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 25/26

0.6 1

0.24

-1.0 -0.5 0.0 0.5 1.0 15 2.0 2.5

References

NumPy reference: https://docs.scipy.org/doc/numpy/
SciPy reference: https://docs.scipy.org/doc/scipy/reference/
https://s3.amazonaws.com/assets.datacamp.com /blog_ assets/Numpy_Python_Cheat_Sheet.pdf

Robert Johansson, Numerical Python: A Practical Techniques Approach for Industry, Apress,
New York, 2015

David J. Pine, Introduction to Python for Science and Engineering, Taylor & Francis Group,
2018

Alexey Fedoseev NumPy, SciPy and Visualization March 11, 2025 26 /26

https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/scipy/reference/

	NumPy & SciPy

