
Documentation and Teach Cluster

Ramses van Zon

PHY1610H 2025 Winter

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 1 / 31

But first, some lessons learnt

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 2 / 31

Assignment 1

Write a program that can take 2d data sampled at
discrete time points and compute a moving average of the
norm of the 2d points as a function of time.

The data comes from a file with 3 columns, where the
first column is time t and the second and third columns
x(t) and y(t) are 2 coordinates. The program should
compute the norm (

√
x2 + y2), and then its moving

average over n points. I.e. for each array element, it
should compute the average of it and the preveeding n-1
elements. n will be an input parameter. Perform this
moving average also for the time values. Write the result
in two-column form to a file.
The program should take commmand line arguments that
correspond to the input file name, the output file name
and the width n of the running average.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 3 / 31

Assignment 1 - Remarks 1/2
Keep it simple:

if you’re not using a function/class for various types, don’t bother with templates.

avoid std::vector<std::vector<double>> ; if your second dimension is small and fixed (e.g. 3),
consider std::vector<std::array<double,3>>

If your first dimension is small and fixed, an automatic array is fine:
std::vector<double> columns[3];

You don’t have to store the n numbers, you can just index them as needed.

Don’t wrap a function around another function if it’s not needed, i.e., not
double sum(vector<double>&v) { return std::reduce(v.begin(),v.end()); }

Use ‘auto’ only when the type is obvious (or obviously unimportant).

Don’t reinvent the wheel:

Needs an object to hold the n numbers while running over the array? Use an std::deque.

The streaming operator >> can do splitting by space; no need to parse the lines yourself.
Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 4 / 31

Assignment 1 - Remarks 2/2

Keep it safe:

no “using namespace std”. You don’t know what identifiers are now defined.

no global variables.

check your input and arguments. If your program needs arguments but is run without out it, it
should print an error message and not just crash.

Don’t waste but be aware of roundoff

pass vectors by reference.

don’t copy vectors if they dont change.

If you compute the moving average by subtracting the tail value and ading the head value, roundoff
error can accumulate. One bad data point (ie., a nan or inf) would ruin all subsequent points.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 5 / 31

Assignment 2

We considered a one-dimensional variant of Conway’s Game of Life, as conceived by Jonathan K. Millen
and published in BYTE magazine in December, 1978.

This system is a linear set of cells that are either “alive” or “dead”, and time progresses in discrete steps.

You are given a code, gameof1d.cpp (see below), that already computes the time evolution of this system,
and for each time step, prints out a line with a representation of the state and fraction of alive cells. It
can take parameters from the command line to set the number of cells, the number of time steps, and the
initial fraction of alive cells.

Your task is to reorganize (‘refactor’) this code to be modular. The aim is to have separate functionalities
be implemented in separate functions.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 6 / 31

Assignment 2 - Remarks
Don’t submit object files, executables not vscode settings, _MAXOSX, .vscode, .DS_Store files.

Create a separate header file for each module.

Comment your code, particularly in the header

Do not pass vectors by value.

For consistency, include a module’s header in its .cpp file

Those who included a README file: Bravo!

In the Makefile:

Executables depend on objects files, but not on headers or cpp files

Object files depend on cpp and header files, not on object files

Don’t forget optimization flags

Rules such as $.o: %.cpp are handy but cannot express the dependencies on header files;
better to be explicit. Also, don’t get too clever for simple projects.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 7 / 31

Assignment 3

A modularized version of the hydrogen code can be found in the zip file below. Your assignment is to
create tests for this code base.

For this assignment, you will have to use git and catch2. We explained in class how to get git on your
computer, but you will have to install the Catch2 Libraries using cmake starting from the catch2 source
code on https://github.com/catchorg/Catch2.

While proceeding with this assignment, we expect you to use git version control

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 8 / 31

Assignment 3 - Remarks
Although not everyone is done yet, a few point already came to light.

Installing a library (here catch2) is sometimes easier said than done.

It is okay if a test fails if that is because the code is not doing what it should.Good! Now we know
what to fix.

Compiling on different OSs and with different compilers can bring issues with the code to the fore.
Good! Fixing this will make our code more portable.

Using unsigned ints can give compilation issues (on clang for this code base).

I usually advise against using unsigned int if any integer math is done, but I went against my own
advice here.

Don’t submit object files, executables not vscode settings, _MAXOSX, .vscode, .DS_Store files.

Codes that use ‘assert’ to flag an error can’t be tested.
Asserts should be used for cases that the code cannot expect, but throw-ing an exception is cleaner.

No need to add library files like those of catch2 and rarray to your submission;
you may assume they are there.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 9 / 31

Documentation

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 10 / 31

Document your modules
The most unlikely pieces of code can end up being reused, so try and add at least a bit of documentation.

There are many documentation styles and philosophies:

No documentation

This style also often advocates no comments. The pretense is that clear code is ‘self-documenting’.

Sure, but . . . yeah, sorry, no.

Auto-generated documentation

Adding specially formatted comments that a tool like doxygen uses to generate documentation.

This is pretty decent, and a good way to keep documentation up-to-date when the code changes.

New-user oriented

Your code will get read by someone with (much) less understanding of what it’s supposed to do than
you. If you were in this situation, what documentation would you need to be able to use the module?

If you do nothing else, at least add a README.md file.
You can also use Sphinx on top of doxygen to write documentation.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 11 / 31

It all starts with comments.

Yes, code should be as clear and to-the-point as possible.

But it cannot express why something is done.

At some point, your code will get read by someone with less understanding than you. And this
includes your future self.

Comments will help this person to quickly recall what the code supposes to do, or get familiar with
someone’s else code.

One of the things to understand is what each function does, the type and values of the arguments it
take, what it returns. as well as limiting cases and restrictions.

By adding specially formatted comments, one can use tools like doxygen to auto-generate
documentation. Doxygen can read your C++ code and combine the definitions of your functions and
scripts with your comments, and generate a manual for your code.

This is a good way to keep documentation up-to-date when the code changes.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 12 / 31

Doxygen by Example
/// @file outputarray.h
/// @author Ramses van Zon
/// @date February 6, 2025
/// @brief Module for writing a 1d array of doubles to text and binary files.
#ifndef OUTPUTARRAYH
#define OUTPUTARRAYH
#include <string>

/// @brief Function to write an array of doubles to a binary file.
/// This function does a raw dump of the array file to file.
/// @param s the filename
/// @param n number of elements of the array to write to file
/// @param x pointer to the first element of the array of doubles
void writeBinary(const std::string& s, int n, const double x[]);

/// @brief Function to write an array of doubles to a text file.
/// The file will contain each element of the array on a separate line.
/// @param s the filename
/// @param n number of elements of the array to write to file
/// @param x pointer to the first element of the array of doubles
void writeText(const std::string& s, int n, const double x[]);
#endif

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 13 / 31

Doxygen by Example (continued)
1 Generate a configuration file for doxygen called Doxygen (then edit it):

$ doxygen -g
$ sed -i 's/PROJECT_NAME[]*=.*/PROJECT_NAME=Outputarray/' Doxyfile

(The sed command just fills in the project name for us into the Doxygen file.)
2 Create a README.md

[//]: # \mainpage
Outputarray is a module for writing a 1d array of doubles to text and binary files.
Compile with: "g++ -c -std=c++17 outputarray.cc -o outputarray.o"
Generate documentation with doxygen as follows

doxygen -g
sed -i 's/PROJECT_NAME[]*=.*/PROJECT_NAME=Outputarray/' Doxyfile
doxygen
make -C latex

This requires doxygen and latex to be installed.
The resulting documentation will be in latex/refman.pdf and html/index.html.

3 Generate the documentation in html and latex form:
$ doxygen

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 14 / 31

Doxygen by Example - HTML Result

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 15 / 31

In a Makefile

The command above use sed so that we can automate the documentation creation in our Makefile:
doc: outputarray.h

doxygen -g
sed -i 's/PROJECT_NAME[]*=.*/PROJECT_NAME=Outputarray/' Doxyfile
doxygen
make -C latex

.PHONY: doc

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 16 / 31

Teach Cluster

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 17 / 31

Compute Clusters

are needed when:

My problem takes too long → more/faster
computation
My problem is too big → more memory
My data is too big → more storage

This involves:

hardware - cpus, multi-processors, network
algorithms - parallelism, efficiency
software - parallel programming, compilers,
optimization, libraries, apps
data management - RDM plan, data
transfer, storage

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 18 / 31

Not your laptop!

The architecture of compute clusters (a.k.a. supercomputers) is different than that of your own computer,
and this matters.

There are a few prototypical architectures you should be aware of:

Clusters

Multi-Core Computers

Accellerators

Furthermore, clusters are remote and shared resources, these machines need to be used quite differently
from how you use your own computer.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 19 / 31

Clusters

~ ~
~

~

n n
n

n

Node1

Node2

Node3

Node4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

��
���

?

�
�

�
�	

Take existing powerful standalone computers,
called nodes.

Link them together through a network (a.k.a
an “interconnect”).

Easy to build and easy to expand.

Because each node• has its own memory
a.k.a. RAM ■, these are called distributed
memory systems.

Nodes communicate and transfer data
through messages.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 20 / 31

Multi-Core Computers

Node

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

A collection of processors on one node that
can see and use the same memory.

Limited number of cores, and much more
expensive when the number of cores is large.

Coordination/communication done through
memory.

Also known as shared-memory systems.

Your desktop, laptop and cell phone likely use
this kind of architecture.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 21 / 31

Accelerators

Systems with accelerators have nodes which
contain a device like a GPU.

Accelerators are very fast and good at
massively parallel processing (having
500-2000+ GPU cores).

More complicated to program.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 22 / 31

Compute Clusters Use Remote Access

You’re at your computer (“terminal”)

The cluster is in a data centre somewhere (“server”).

You must connect remotely using ssh (“secure shell”).

You must interact with the cluster using the command line.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 23 / 31

Logging in to Teach

You will receive an email with your user account and how to set your first-time password.

To log in, type on the command line (could be in a local terminal in MobaXTerm in Windows):
$ ssh -Y USERNAME@teach.scinet.utoronto.ca

and type the password.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 24 / 31

Transfering files to Teach

To download files to Teach when logged in, use
$ wget URL

To copy files from your computer to the Teach Cluster
$ scp filename USERNAME@teach.scinet.utoronto.ca:path/filename
$ scp USERNAME@teach.scinet.utoronto.ca:path/filename filename

For whole directories. add the -r option.

For code, use git clone/push/pull!

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 25 / 31

Teach is a Shared Systems

You’re now on a login node together with all other folks working on the Teach Cluster.

All other nodes of a cluster like this are compute nodes.

The login node is for developing, compiling testing, and preparing compute jobs.

To run on compute nodes, you need to create a job script that contains a request for specific
resources for a specific time.

You pass this job script to the scheduler.

The scheduler used on the Teach Cluster, and on many other clusters, is called SLURM.

The scheduler keeps the queue and allocates compute nodes to jobs in due time.

Compute nodes see the same home directory as the login nodes.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 26 / 31

Developing on Teach

Most software is installed as modules.

In particular, the C++ compilers are also in modules.So before you can compile, you need to do
teach-login01:~$ module load gcc

For testing, catch2 is also installed as a module:
teach-login01:~$ module load catch2

Rarray is available a module as well.

For documentation, doxygen and latex are already available without loading a module
teach-login01:~$ doxygen --version

To view the resulting pdf, you can use mupdf.

For editing, the path of least resistance is to use a terminal editor like nano, vi, or emacs.

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 27 / 31

Job Submission on Teach

Log in to the Teach cluster $ ssh USERNAME@teach.scinet.utoronto.ca

Copy the material needed for this
example

$ wget https://pages.scinet.utoronto.ca/~rzon/ia.tgz
$ tar xzvf ia.tgz

Change to the newly created directory $ cd ia

Submit the job ‘sweep_bondbreak.sh’ $ sbatch sweep_bondbreak.sh

Check the status of your job(s) $ squeue --me

Once running/completed, check the
output in slurm-*.out

$ less slurm-*.out

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 28 / 31

Job script: sweep_bondbreak.sh
#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --time=01:00:00
#SBATCH --mem=1000M

module load python/3.10.2 scipy-stack/2023a

TEMP=2.2 # temperature value
NUMSEEDS=500 # number of seeds
OUTPUT=output-$TEMP-$SLURM_JOB_ID
mkdir -p $OUTPUT

Run multiple cases with different random seeds
for SEED in $(seq $NUMSEEDS) ; do

echo "Simulation $SEED of $NUMSEEDS"
./bondbreak -t $TEMP -s $SEED -f $OUTPUT/$TEMP-$SEED.dat -l $OUTPUT/$TEMP-$SEED.log

done

Extract the breakage times from the logs
awk '/BREAKAGE DETECTED/{print $8}' $OUTPUT/$TEMP-*log > $OUTPUT/breaktimes.dat

←− First line makes this a bash shell script}
#SBATCH lines request 1 core, for 1 hour (on teach –mem is ignored)

Rest of script kept to run on allocated compute node.
←− Most software requires module commands

←− Setup up parameters

←− A loop in the bash shell

↖ Pass parameters to bondbreak app

↙ Collect breakage times

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 29 / 31

Using the Scheduler on Teach

Main commands to interact with the scheduler
sbatch submit job
squeue see queued jobs and their status
scancel cancel a job
debugjob get short interactive job on a compute node

Common sbatch parameters for Teach:

-t --time amount of time
-N --nodes number of nodes
-n --ntasks number of tasks

--ntasks-per-node number of tasks per node
-c --cpus-per-task number of threads per task

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 30 / 31

More Information on Teach

There is a wiki page on how to use Teach:

https://docs.scinet.utoronto.ca/index.php/Teach

Because the software stack is the same as on the Digital Research Alliance Clusters, the Alliance
documentation can be helpful as well:

https://docs.alliancecan.ca

Ramses van Zon Documentation and Teach Cluster PHY1610H 2025 Winter 31 / 31

https://docs.scinet.utoronto.ca/index.php/Teach
https://docs.alliancecan.ca

	But first, some lessons learnt
	Documentation
	Teach Cluster

