Libraries and Testing

Ramses van Zon

PHY1610, Winter 2025

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 1/26

Libraries

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 2/26

Code is bad

There is a big different in the way scientists view code and the way software developer view it.

Code is an asset. Code is a liability.

e Every line of code you write has potential issues now or in the future and needs to be maintained.

e Scientists will often come up with quick and dirty solutions to get results, which causes headaches
later in the development process:

e Furthermore there is a lot of code that has already been written and that can be reused, so you
might be

The solution is to

Reuse and recycle code that is out there by using

Ramses van Zon Libraries and Testing

Libraries are modules

e So let's start with a modular code.

e Several object files for different modules that
need to be linked together.

e Example: thisapp.cpp contains the main
function and helper.cpp/helper.h are a
module.

makefile for 'thisapp'
CXX=g++

CXXFLAGS=-03 -Wall -std=c++17
all: thisapp

thisapp.o: thisapp.cpp helper.h
$(CXX) $(CXXFLAGS) -c -o thisapp.o thisapp.cpp

helper.o: helper.cpp helper.h
$(CXX) $(CXXFLAGS) -c -o helper.o helper.cpp

thisapp: thisapp.o helper.o
$(CXX) -o thisapp thisapp.o helper.o

Ramses van Zon

newapp: newapp.o

Libraries and Testing

® To reuse the module, copy helper.cpp/.h

e What if we could use it in another project
called without recompiling helper.cpp?

e Install .o and .h to separate directories:
helper.h -> /base/include/helper.h
helper.o -> /base/lib/helper.o

e Must let compiler know where they are:
Add -T flag for include directories.

makefile for 'mewapp'

CXX=g++

CXXFLAGS=-I/base/include -03 -Wall -std=c++17
all: newapp

newapp.o: newapp.cpp

$(CXX) $(CXXFLAGS) -c -o newapp.o newapp.cpp

$(CXX) -o newapp newapp.o /base/lib/helper.o

PHY1610, Winter 2025

Libraries, continued

What we just did is a poor man's library building.
Real libraries are similar; they have

® to be installed (and perhaps built first)
® header files (.h or .hpp) in some folder
e library files (object code) in a related folder.

Library filenames start with 1ib & end in .a/.so.

To avoid explict paths in makefile rules, we specify:

e the path to the library’s object using the
option in the variable;

® the object code using
(a lower case 1!) stored in variable

We're not getting into creating your own libraries
here, which requires some system-dependent
specialized linking commands.

Ramses van Zon

Libraries and Testing

makefile for 'newapp'

CXX=g++

CXXFLAGS=-I/base/include -03 -Wall -std=c++17
all: newapp

newapp.o: newapp.cpp
$(CXX) $(CXXFLAGS) -c -0 newapp.o newapp.cpp

newapp: newapp.o

$(CXX) -o newapp newapp.o /base/lib/libhelper.a

makefile for 'nmewapp'

CXX=g++

CXXFLAGS=-I/base/include -03 -Wall -std=c++17
LDFLAGS=-L/base/1lib

LDLIBS=-1lhelper

all: newapp

newapp.o: newapp.cpp
$(CXX) $(CXXFLAGS) -c -o newapp.o newapp.cpp

newapp: newapp.o
$(CXX) $(LDFLAGS) -o newapp newapp.o $(LDLIBS)

PHY1610, Winter 2025

5/26

Libraries, once more

Adding a clean rule and extracting the common
path, the Makefile for newapp will look like this:

makefile for 'newapp'

CXX=g++

HELPERBASE?=/base/

HELPERINC=$ (HELPERBASE) include

HELPERLIB=$ (HELPERBASE)1ib

CXXFLAGS=-I$ (HELPERINC) -03 -Wall -std=c++17
LDFLAGS=-L$ (HELPERLIB)

LDLIBS=-1helper

all: newapp

newapp.o: newapp.cpp
$(CXX) $(CXXFLAGS) -c -o newapp.o newapp.cpp

newapp: newapp.o
$(CXX) $(LDFLAGS) -o newapp newapp.o $(LDLIBS)

clean:
$(RM) newapp.o

Ramses van Zon

Note:
e C++ standard libaries (vector,cmath, . ..)
do not need any 's.
e There are for libraries that

Libraries and Testing

needn't be specified in or
(/usr/include,...)

options

Libraries installed through a package manager
end up in standard paths; they just need
options in LDLIBS.

You also do not need or -L for libraries
accessed using the ‘module load’ command on
the Teach or Niagara clusters.

If you compile your own libraries in
non-standard locations, you do neg
options.

Installing libraries from source

What to do when your package manager does not have that library, or you do not have permission to
install packages in the standard paths?

Or, what if you are on SciNet systems (where you do not have permissions to install using the package
manager) and there isn't a module for that library already?
Compile from source code with a "base" or "prefix" directory.

Common installation procedure (but read documentation!):

$./configure --help $ mkdir builddir && cd builddir
$./configure --prefix=<BASE> $ cmake .. -DCMAKE_INSTALL_PREFIX=<BASE>
$ make -j 4 $ make -j 4

$

$ make install make install

You choose the <BASE>, but it should be a directory that you have write permission to, e.g., a
subdirectory of your SHOME. These are “non-standard” installation directories.

If the documentation says to do sudo, except for system-wide installations on personal
computers.

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 7/26

Using Libraries

e Include its header file(s) in your code.
e Link with ~1LIBNAME.
e Non-standard installation directory? You need -~I<BASE>/include and -L<BASE>/1ib options.

e Alternatively, you can omit these for g++ under linux by setting some environment variables:

export CPATH="$CPATH:<BASE>/include" # compiler looks here for include files
export LIBRARY_PATH="$LIBRARY_PATH:<BASE>/1lib" # and here for library files
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:<BASE>/1ib" # runtime linker looks here

Eenter these commands on the linux prompt before make or add to your ~/.bashrc.
e The LD_LIBRARY_PATH is necessary to run application linked against dynamic libraries (.so).
e If the library installs binary applications (i.e. commands) as well, you'll also need to set

export PATH="$PATH:<BASE>/bin" # linux shell looks for executables here

e Read the documentation that came with the library (before searching the web)!

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 8/26

Library Example: GNU Scientific Library

van Zon Libraries and Testing PHY1610, Winter 2025

9/26

GNU Scientific Library (GSL)

Is a C library containing many useful scientific routines, such as:

e Root finding e Monte Carlo integration, simulated annealing
e Minimization e ODEs
e Sorting e Polynomials, permutations
e Integration, differentiation, interpolation, e Special functions
approximation
e Vectors, matrices
e Statistics, histograms, fitting

Note: C library means we'll likely need to deal with some pointers and casts.

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 10 /26

GSL root finding example

Suppose we want to find where f(x) = acos(sin(v + wx)) + bx — cx? is zero (a “root”).

// gslrx.cpp fwrapper.function = examplefunction;

#include <iostream> fwrapper.params = &args;

#include <gsl/gsl_roots.h> gsl_root_fsolver_set(solver,&fwrapper,x_lo,x_hi);

struct Params { std::cout << "iter lower upper root err\n'";

double v, w, a, b, c;

}; int status = 1;

double examplefunction(double x, void* param){ for (int iter=0; status and iter < 100; ++iter) {

Params* p = reinterpret_cast<Params*>param; gsl_root_fsolver_iterate(solver) ;

return p->axcos(sin(p->v+p->w*x))+p->bkx—p->ckx*x; double x_rt = gsl_root_fsolver_root(solver);

¥ double x_lo = gsl_root_fsolver_x_lower(solver);
double x_hi = gsl_root_fsolver_x_upper (solver);

int main() { std::cout << iter <<" "<< x_lo <<" "<< x_hi

double x_lo = -4.0; << "< x_rt <<" "<<x_hi-x_lo<<"\n";

double x_hi = 5.0; status=gsl_root_test_interval(x_lo,x_hi,0,1le-3);

Params args = {0.3, 2/3.0, 2.0, 1/1.3, 1/30.0}; }

gsl_root_fsolver* solver;

gsl_function fwrapper; gsl_root_fsolver_free(solver);

solver = gsl_root_fsolver_alloc(return status;

gsl_root_fsolver_brent); }

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 11/26

Compilation and linkage

$ module load gcc/13 gsl/2.7.1

e Lots of gsl1... stuff. $ GSLINC=$MODULE_GSL_PREFIX/include
$ GSLLIB=$MODULE_GSL_PREFIX/1ib
o All of the algorithms come from the GSL. $ g++ —c -I$GSLINC gslrx.cpp -o gslrx.o
$ gt++ gslrx.o -o gslrx -L$GSLLIB -1gsl -lgslcblas
e The rest is just wrappers, setting up $./gslrx
parameters and calling the appropriate
functions.
® There are pointers and typecasts, because Output
we're dealing with a C library. $./gslrx
. . iter lower upper root err
* How to compile on the command line? 0 -4 _1.97657 -1.27657 2.72343
1 -1.95919 -1.27657 -1.95919 0.682622
2 -1.75011 -1.27657 -1.75011 0.473542
3 -1.75011 -1.74893 -1.74893 0.0011793
$

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 12 /26

GSL Makefile usage

CXX=g++

GSL_MODULE_PREFIX?7=.

GSLINC?=$ (MODULE_GSL_PREFIX)/include
GSLLIB?=$ (MODULE_GSL_PREFIX)/1lib
CXXFLAGS=-I$(GSLINC) -03 -Wall -std=c++17
LDFLAGS=-L$ (GSLLIB)

LDLIBS=-1gsl -lgslcblas

all: gslrx
.PHONY: all clean

gslrx.o: gslrx.cpp
$(CXX) $(CXXFLAGS) -c -o gslrx.o gslrx.cpp

gslrx: gslrx.o
$(CXX) $(LDFLAGS) -o gslrx gslrx.o $(LDLIBS)

clean: ; $(RM) gslrx.o

Ramses van Zon

Libraries and Testing

Compilation on Teach cluster:

$ module load gcc/13 gsl/2.7.1
$ make

Compilation on your own computer:

$ export GSLINC=... # whereever headers are

$ export GSLLIB=... # whereever libs are

$ make

or

$ export MODULE_GSL_PREFIX=... # with include & lib
$ make

You can also set make variables like this:
$ make MODULE_GSL_PREFIX=... # with include & 1lib

Don’t Reinvent the Wheel

e There are many possible algorithms to implement for root finding.

e But they are all pretty standard.

e Surely, someone must have done this already?

e The GNU Scientific Library is one such library.

e Don't implement this yourself if there is a library that does it for you.

e Even existing solutions like the once in the GSL, can't really be used until you understand the
algorthims on a high level.

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 14 /26

Testing

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 15 /26

Integrated testing

e Especially with new software, or old software
that was modified, you'll want to verify that it
works as a whole.

e Test the application with a smaller test case
for which you know that output.

e This can strictly only prove incorrectness
(no tests can prove correctness).

e But if no errors are found, it increases your
level of confidence in the software.

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 16 /26

Unit testing

e An integrated test essentially gives you one
data point.

e If you've modularized the code into n parts,
you should have at least n data points to know
that the parts aren't failing.

e Because each module has one responsibility,
you can write a test for each module.

e If the test for a module fails, you only need to
inspect that module, not the whole code of the
application.

e Note that if you did not modularize, everything
is connected, you could not have n tests.
And when the integrated test fails, the error
could be anywhere in the code.

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 17 /26

Remember the example from lecture 5

// hydrogen.cpp # Makefile
#include <iostream> CXXFLAGS=-std=c++17 -03 -Wall -g
#include <rarray> LDFLAGS=-g
#include "eigenval.h" all: hydrogen
#include "output.h" hydrogen.o: hydrogen.cpp eigenval.h output.h init.h
#include "init.h" eigenval.o: eigenval.cpp eigenval.h
int main() { output.o: output.cpp output.h
const int n = 4913; init.o: init.cpp init.h
rmatrix<double> m = initMatrix(n); hydrogen: hydrogen.o eigenval.o output.o init.o
rvector<double> a; $(CXX) $(LDFLAGS) -o $@ $~
double e; clean:
groundState(m, e, a); $(RM) hydrogen.o eigenval.o output.o init.o

std: :cout<<"Ground state energy="<<e<<"\n";
writeText("data.txt", a);
writeBinary("data.bin", a);

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 18 /26

By the way: Makefile Special Variables

e $@: the target filename

e $x: the target filename without the file extension

e $<: the first prerequisite filename

e $7: the filenames of all the prerequisites, separated by spaces, discard duplicates.

e $+: similar to $7, but includes duplicates

e $7: the names of all prerequisites that are newer than the target, separated by spaces

Furthermore, there are built-in make rules, such as making a .o from a .cpp is done with

$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c -o $@ $<

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 19/26

Remember the example from lecture 5

// hydrogen.cpp

#include <iostream>

#include <rarray>

#include "eigenval.h"

#include "output.h"

#include "init.h"

int main() {
const int n = 4913;
rmatrix<double> m = initMatrix(n);
rvector<double> a;

Makefile

CXXFLAGS=-std=c++17 -03 -Wall -g
LDFLAGS=-g

all: hydrogen

hydrogen.o: hydrogen.cpp eigenval.h output.h init.h

eigenval.o: eigenval.cpp eigenval.h
output.o: output.cpp output.h
init.o: init.cpp init.h

hydrogen: hydrogen.o eigenval.o output.o init.o

$(CXX) $(LDFLAGS) -o $@ $~

double e; clean:

groundState(m, e, a); $(RM) hydrogen.o eigenval.o output.o init.o
std: :cout<<"Ground state energy="<<e<<"\n";

writeText("data.txt", a);

writeBinary("data.bin", a);

}

How would we create an integrated test?

Ramses van Zon Libraries and Testing

Example: Integrated test for hydrogen

® Create reference output

$ g++ —std=c++17 -03 -g -o hydrogen0 hydrogenO.cpp
$ # or 'make' and 'mv hydrogen hydrogenO'

$./hydrogen0 > coutO.txt

$ mv data.txt datal.txt

$ mv data.bin data0O.bin

©® Run the new modular code

$ make hydrogen
$./hydrogen > cout.txt

© Compare the outputs

$ diff cout.txt coutO.txt
$ diff data.txt datal.txt
$ cmp data.bin data0.bin

© make integratedtest

Ramses van Zon

Libraries and Testing

Automate everything!

© Store your reference

$ git add datal.txt datal.bin coutO.txt
$ git commit -m 'Added original output as reference

© Add a integratedtest rule to the Makefile

cout.txt: hydrogen
hydrogen > cout.txt
integratedtest: datal.txt datal.bin coutO.txt \
data.txt data.bin cout.txt
diff cout.txt coutO.txt
diff data.txt datal.txt
cmp data.bin data0.bin

O Always git commit

$ git add Makefile
$ git commit -m 'Added integratedtest to Makefile'

PHY1610, Winter 2025

Example: Unit test for output module (1/2)

// output.h #include "output.h"
#ifndef OUTPUTARRH #include <iostream>
#define OUTPUTARRH #include <fstream>
#include <string> int main() {
#include <rarray> std::cout << "A UNIT TEST FOR 'writeText'\n";
// The writeBinary function writes the 1d rarray // test file writing:
// 'a' to the file 'name' in binary format rvector<double> a(3);
void writeBinary(const std::string& name, a =iy 2, &3
const rvector<double>& a); writeText ("testoutputarr.txt", a);
// The writeText function writes the 1d rarray // read it back

// 'a' to the file 'name' in ASCII format
void writeText(const std::string& name,

const rvector<double>& a);
#endif

Both writeBinary and writeText should have at

least one unit test.

But let's start with one unit test for write Text.

It could look like this:

Ramses van Zon

Libraries and Testing PHY1610, Winter 2025

std::ifstream in("testoutputarr.txt");
std: :string s[3];
in >> s[0] > s[1] >> s[2];
// check
if (s[0]!="1" or s[1]!="2" or s[2]!="3") {
std::cout << "TEST FAILED\n";
return 1;

} else {
std::cout << "TEST PASSED\n";
return O;

}

Example: Unit test for output

Add to makefile:

test: run_output_test integratedtest °

run_output_test: °
./output_test

output_test: output_test.o output.o

$(CXX) $(LDFLAGS) -o $@ $~ *
output_test.o: output_test.cpp output.h

$(CXX) $(CXXFLAGS) -c -o $@ $< o

.

To run:
$ make test .
g+t ...
g+t ..

./output_test

A UNIT TEST FOR 'writeText'
TEST PASSED

$ echo $7

0

Ramses van Zon Libraries and Testing

module (2/2)

Important things to note

Unit tests are separate from the application!

The test only depends on output.h and
output.o. (test isolation)

It's a separate program, which requires its own
data initialization and checking.

The ‘test’ rule runs all tests
All tests for one module are ideally in one file.

To automate, we need a consistent way to
report errors, a way to run only some tests,
etc.:

Unit testing frameworks

e There's a lot of extra coding here just to run the tests.
® The tests need to be maintained as well.

e Especially when your project contains a lot of tests,
use a unit testing framework.

Examples:
e Boost.Test (from the Boost library suite)
e Google C++ Testing Framework (a.k.a googletest)
e Catch2
These are typically combinations of macros, a driver main function that can select which tests to run, etc.

e For the assignment, you should be using Catch2.

Ramses van Zon Libraries and Testing

Example of Catch2

// output_c2.cpp
#include "output.h"
#include <fstream>

#include <catch2/catch_all.hpp>

TEST_CASE("writeText test")

{

// create file:

rvector<double> a(3);

a=1,2,3;

writeText ("testoutputarr.txt", a);
// read back:

std::ifstream in("testoutputarr.txt");
std::string s[3];

in >> s[0] >> s[1] >> s[2];

// check

REQUIRE(s[0]=="1");
REQUIRE(s[1]=="2");
REQUIRE(s[2]=="3");

Ramses van Zon

Libraries and Testing

$ module load gcc/13 catch2/3.3.1

$ g++ -std=c++17 -g -03 -Wall -c output_c2.cpp
$ g++ -g -03 -o output_c2 output_c2.o output.o
-1Catch2Main -1Catch2

$./output_c2 -s

Randomness seeded to: 3824212292

output_c2 is a Catch2 v3.3.1 host application.
Run with -7 for options

writeText test

All tests passed (3 assertions in 1 test case)

PHY1610, Winter 2025

Guidelines for testing

e Each module should have a separate test suite
(e.g. output_c2.cpp should also have a test for writeBinary).

e If the code is properly modular, those module test should not need any of the other .cpp files.

e Each module should have a named target in the Makefile that runs its test suite.

run_output_c2:
./output_c2 -s
output_c2: output_c2.o0 outputarr.o
$(CXX) $(LDFLAGS) -o $@ $~ -1Catch2Main -1Catch2
output_c2.0: output_c2.cpp outputarr.h
$(CXX) $(CXXFLAGS) -c -o $@ $<
.PHONY: run_output_c2

e An overall ‘test’ target should run all test suites and any integrated tests.
e Testing gives confidence in your module, and tells you which modules have stopped working properly.

® Once your tests are okay, you now have a piece of code that you could easily use in other
applications as well, and which you can comfortably share.

Ramses van Zon Libraries and Testing PHY1610, Winter 2025 26/26

	Libraries
	Library Example: GNU Scientific Library
	Testing

