
Arrays and Objects

Ramses van Zon

PHY1610, Winter 2025

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 1 / 32

What is an array?
A number of elements of the same type
These elements are organized into a 1d, 2d, 3d, . . . rectangular shape or grid.
1-dimensional array = vector: grid is trivial.
2-dimensional array = matrix: grid represent rows and columns
3-and-higher-dimensional sometimes called a tensor, generalization of matrix.

Let’s look at the case of a matrix in particular:

type: integers
size: 16
first extent: 4 (4 rows)
second extent: 4 (4 columns)
shape: {4,4}
rank: 2 (two dimensions, both are 4)

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 2 / 32

Automatic C arrays

int main()
{

int matrix[4][4] = {{1,2,3,4},
{9,8,7,6},
{2,4,6,8},
{6,5,4,3}};

// ...
}

You’ve seen automatic (a.k.a. static) arrays already.
They are only useful if you know the size of your
array ahead of time and they have modest
dimensions.
What we also saw that array expressions are
equivalent to pointers to the first element.
This has dire consequences.
But first, let’s consider what is good about this
when calling functions.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 3 / 32

Passing arrays to functions
C++ functions pass arguments by value.
If arrays were first-class types, the whole array
would need to be copied to the function.
Instead, the function takes a copy of the
pointer to the first element of the array.
It is then able to manipulate the original array
in memory, without making a copy of all the
elements.
Different sized arrays are equivalent to the
same pointer type, so you can use one function
for different sizes.
But we must pass the size as an argument to
make up for this flexibility.

// cookies.cpp
#include <iostream>
int sum_arr(const int arr[], int n) {

int total = 0;
for (int i = 0; i < n; i++)

total += arr[i];
return total;

}

int main() {
int cookies[8] = {1, 2, 4, 8, 16, 32, 64, 128};
int sum = sum_arr(cookies, 8);
std::cout<<"Cookies eaten: "<<sum<<"\n";
int* mc = new int[5] {1, 2, 4, 8, 16};
int sum2 = sum_arr(mc, 5);
std::cout<<"More Cookies eaten: "<<sum2<<"\n";
delete[] mc;

}

$ g++ -std=c++17 -O3 -Wall cookies.cpp -o cookies
$./cookies
Cookies eaten: 255
More cookies eaten: 31

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 4 / 32

How about a multidimensional array?
Computer memory addresses are linear.

So a bunch of numbers has no shape.

We could represent the array linearly by storing
row after row:

int linear(int row, int col, int nrow, int ncol) {
return row*ncol + col;

}
int main() {

int nrows=4, ncols=4;
int linarr[nrows*ncols]
= {1,2,3,4,9,8,7,6,2,4,6,8,6,5,4,3};
int r = 1, c = 2;
int i = linear(r,c,nrows,ncols);
linarr[i] = 5.0;

}

But C++ has automatic multidimensional arrays.

int main() {
int nrows=4, ncols=4;
int arr[nrows][ncols]
= {{1,2,3,4},{9,8,7,6},{2,4,6,8},{6,5,4,3}};
int r = 1, c = 2;
arr[r][c] = 5.0;

}

Stores elements row by row: row major
When passing arrays to functions, these get
converted to pointers to the first element.
Which is of type int[][4].

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 5 / 32

Structure of 2D arrays
If a 1D array is actually a pointer to a block of memory, a 2D array is a pointer to a block of memory
which contains pointers to other blocks of memory.
int data[4][4] = {{1,2,3,4}, {9,8,7,6}, {2,4,6,8}, {6,5,4,3}};

C++ arrays are stored in memory in blocks of rows: row major.

The compiler considers this an array of 4 int[4]’s.
Automatic arrays: compiler creates row pointers.
Dynamic arrays: must construct array of pointers.
If you pass a native multidimensional array to a
function, you must specify the dimensions of the
array as part of the type, so that C++ knows how
to index things properly:
int sum_arr(int data[][4], int size);

You’d need a separate function for every
possible column dimension.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 6 / 32

2D dynamic arrays, two ways
If we allocate 2d arrays (“matrix”) dynamically, we can write functions that can take any size 2d array.
One can think of different ways to allocate a matrix:

Allocate a matrix, method 1 (textbook) Allocate a matrix, method 2

int** allocate_matrix1(int n, int m) {
int** a = new int*[n];
for (int i = 0; i < n; i++)

a[i] = new int[m];
return a;

}

int** allocate_matrix2(int n, int m) {
int** a = new int*[n];
a[0] = new int[n * m];
for (int i = 1; i < n; i++)

a[i] = &a[0][i * m];
return a;

}
It turns out many libraries need contiguous memory! So use the second one.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 7 / 32

Deallocating 2D arrays

The second method allocates continuous memory, while the first does not.
This affects how you should deallocate.
The discontinuous block can be deleted like this:
void deallocate_matrix1(int** a, int numrows) {

for (int i = 0; i < numrows; i++)
delete [] a[i];

delete [] a;
}

The continuous block is deleted like this:
void deallocate_matrix2(int** a) {

delete[] a[0];
delete[] a;

}

Note that delete[] must be called as many times as new ...[] was called.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 8 / 32

Use pointers for dynamic arrays function arguments
int sum_arr(int** p, int n, int m) {

int total = 0;
for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)
total += p[i][j];

return total;
}

int** allocate_matrix2(int n, int m) {
int** a = new int*[n];
a[0] = new int[n * m];
for (int i = 1; i < n; i++)

a[i] = &a[0][i * m];
return a;

}

void deallocate_matrix2(int** p) {
delete [] p[0];
delete [] p;

}

#include <iostream>
int main()
{

int numrows = 3, numcols = 4;
int** p = allocate_matrix2(numrows, numcols);
for (int i = 0; i < numrows; i++) {

for (int j = 0; j < numcols; j++) {
p[i][j] = i + j;
std::cout << p[i][j] << " ";

}
std::cout << std::endl;

}
std::cout << "Total="

<< sum_arr(p,numrows,numcols)
<< std::endl;

deallocate_matrix2(p);
}

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 9 / 32

By the way: Accessing memory efficiently

Which is faster?
int sum_arr1(int** p, int numrows, int numcols) {

int total = 0;
for (int i = 0; i < numrows; i++)

for (int j = 0; j < numcols; j++)
total += p[i][j];

return total;
}

or
int sum_arr2(int** p, int numrows, int numcols) {

int total = 0;
for (int j = 0; j < numcols; j++)

for (int i = 0; i < numrows; i++)
total += p[i][j];

return total;
}

The first one is faster, but why?
First one traverses p linearly in contiguous memory.
That’s what memory subsystems are best at.
The second case jumps around in memory, and
makes the memory subsystem work harder (look up
“cache”).
When looping over blocks, arrange your arrays so
that you are looping over the last index for row
major languages.

There are several object oriented C++ packages
available to allow you to deal with
multi-dimensional arrays. Let’s revisit what “object
oriented” means first.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 10 / 32

Object Oriented programming

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 11 / 32

Object Oriented Programming (OOP)

Complexity can be hidden inside each component.
Can separate interface from the implementation.
Can have multiple instances of the same type of component.
Reuse of components.
Same interface can be implemented by different objects.
Objects’ functionality can be extended using inheritance.

At a low level, OOP may need to be broken for best performance.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 12 / 32

C objects: Structs

C already had objects, sort of; it calls them structs.
C++ inherited those and builds upon them

struct Point2D {
int j;
double x, y;

};
void print1(Point2D a) {

std::cout << a.j << ' ' << a.x << ' ' << a.y;
}
void print2(Point2D* a) {

std::cout << a->j << ' ' << a->x << ' ' << a->y;
}

Calling print1 makes a copy of the content of
a.
Calling print2 only copies address of a.
Memory copies are not cheap!

C++ way of avoiding copies:
void print3(const Point2D& a) {

std::cout << a.j << ' ' << a.x << ' ' << a.y;
}

& makes this a call by reference; no copy!

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 13 / 32

Encapsulation in Objects

In true OOP, data is encapsulated and accessed using methods specific for that (kind of) data.
The interface (collection of methods) should be designed around the meaning of the actions:
abstraction.
Programs typically contain multiple objects of the same type, called instances.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 14 / 32

Classes and Objects

Objects in C++ are made using classes.
A class is a type of object.
From a class, one creates 1 or more instances.
These are the objects.
Syntactically, classes are structs with member functions.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 15 / 32

How do we add these member functions?

Declaration:
class Point2D {
public:

int j;
double x,y;
void set(int aj, double ax, double ay);

};

Definition:
void Point2D::set(int aj, double ax, double ay)
{

j = aj;
x = ax;
y = ay;

}

How do we use the class?

int main() {
Point2D myobject; // creates the object
myobject.set(1, -0.5, 3.14); // calls member function
std::cout << myobject.j << "\n"; // uses member variable

}

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 16 / 32

Data hiding

Good components hide implementation details
Each member function or data member can be

1 private: only member functions of class have
access

2 public: accessible from anywhere

These are specified as sections within the class.

Example (Declaration)

class Point2D {
private:

int j;
double x,y;

public:
void set(int aj,double ax,double ay);
int get_j();
double get_x();
double get_y();

};

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 17 / 32

Data hiding
Example (Declaration)

class Point2D {
private:

int j;
double x,y;

public:
void set(int aj,double ax,double ay);
int get_j();
double get_x();
double get_y();

};

Example (Definition)

int Point2D::get_j() {
return j;

}
double Point2D::get_x() {

return x;
}
double Point2D::get_y() {

return y;
}

Example (Usage)

Point2D myobject;
myobject.set(1,-0.5,3.14);
std::cout << myobject.get_j() << "\n";

WARNING:

It can be costly if, each time the data is needed, a
function has to be called.
Considering making data is that is needed often by
an algorithm just public, or use a friend .

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 18 / 32

Class > Struct

A class defines a type, and when an instance of that type is declared, memory is allocated for that
struct.
A class is more than just a chunk of memory.
For example, arrays may have to be allocated (new ...) when the object is created.
When the object ceases to exist, some clean-up may be required (delete ...).
Constructor
is called when an object is created.
Destructor
is called when an object is destroyed.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 19 / 32

Constructors
Example

class Point2D {

private:
int j;
double x,y;

public:
Point2D(int aj,double ax,double ay); // Constructor declared
int get_j();
double get_x();
double get_y();

};

Point2D::Point2D(int aj,double ax,double ay) { // Constructor defined
j = aj;
x = ax;
y = ay;

}

Point2D myobject(1,-0.5,3.14); // Constructor called

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 20 / 32

Destructors

. . . are called when an object is destroyed.
This occurs when a non-static object goes out-of-scope, or when delete is used.
Good opportunity to release memory.
Declare destructor as a member functions of the class with no return type, with a name which is the
class name plus a ~ attached to the left.
A destructor cannot have arguments.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 21 / 32

And this is just the beginning of OOP with C++.

There’s far more that one can learn about objects in C++.
For example: inheritance, operating overloading, friends, automatic conversions, . . .
These are getting to an advanced level. You can look them up as you please.

A note about using C++ objects with HPC

Objects are elegant and simplify coding. However, objects can come with a fair amount of overhead, and
can slow down your code considerably under certain circumstances, such as very frequent calls to member
functions.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 22 / 32

Back to multi-dimensional arrays

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 23 / 32

Better array alternative: the rarray library
https://github.com/vanzonr/rarray
Fast, arbitrary rank, same access syntax as C arrays, row major.
Copies are shallow, but reference counted.
Header-only library:

▶ https://raw.githubusercontent.com/vanzonr/rarray/main/rarray

Example:

// rarrayex.cc
#include <rarray>
#include <iostream>
int main() {

rarray<double,2> a(3,3);
a.fill(4);
for (int i=0; i<3; i++)

for (int j=0; j<i; j++)
a[i][j] = i+j;

std::cout << a << "\n";
}

$ g++ -std=c++17 -O3 -Wall rarrayex.cc -o rarrayex
$./rarrayex
{
{4,4,4},
{1,4,4},
{2,3,4}
}

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 24 / 32

https://raw.githubusercontent.com/vanzonr/rarray/main/rarray

About rarray
Written specifically as an optimized way to circumvent the weirdness of C++ arrays.
Similar syntax as builtin C++ arrays (repeated square brackets to access elements)
Rarrays behave much like shared pointers: If you copy rarray a to rarray b, both share the same data.
But rarrays are objects that remember their shape.
Automatically deletes memory, but uses reference counters to avoid dangling references from copies.
rarrays use heap memory, thus allowing for large arrays
Data is contiguous, so rarrays are compatible with common numerical libraries (BLAS, FFTW, . . .)
(the libaries will expect pointers, which you get through .data())
General type is rarray<TYPENAME,RANK>, where rank is a positive integer. Shorthands:

▶ rarray<TYPENAME,1> = rvector<TYPENAME>
▶ rarray<TYPENAME,2> = rmatrix<TYPENAME>
▶ rarray<TYPENAME,3> = rtensor<TYPENAME>

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 25 / 32

Rarray in a Nutshell

Define a n×m×k array of doubles: rarray<double,3> b(n,m,k);
Define it with preallocated memory: rarray<double,3> c(ptr,n,m,k);
Element i,j,k of the array b: b[i][j][k]
Pointer to the contiguous data in b: b.data()
Total number of elements in b: b.size()
Extent in the ith dimension of b: b.extent(i)
Array of all extents of b: b.shape()
Define an array with same shape as b: rarray<double,3> b2(b.shape());
Reference-counter copy of the array: rarray<double,3> d=b;
Deep copy of the array: rarray<double,3> e=b.copy();
Output a rarray: std::cout << h << "\n";
Read in a rarray: std::cin >> h;

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 26 / 32

From C++ arrays to rarrays
Consider this code using C++ arrays:
#include <iostream>
int main()
{

double a[] = {0, 1, 2, 3, 4};

double *b = new double[5];
for (int i = 0; i < 5; i++)

b[i] = i;

for (int i = 0; i < 7; i++)
std::cout << a[i] << " ";

std::cout << "\n";

for (int i = 0; i < 7; i++)
std::cout << b[i] << " ";

std::cout << "\n";

delete [] b;
}

We can do the same with rarrays:
#include <rarray>
int main()
{

rvector<double> a = make_rarray({0, 1, 2, 3, 4});

rvector<double> b(5);
for (int i = 0; i < 5; i++)

b[i] = i;

// or: rvector<double> b = linspace<double>(0,4,5);

std::cout << a << "\n";
std::cout << b << "\n";

}

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 27 / 32

Passing an rarray to a function
With plain C++ arrays, we needed pass the size:
#include <iostream>
int sum_arr(int arr[], int n) {

int total = 0;
for (int i = 0; i < n; i++)

total += arr[i];
return total;

}
int main() {

const int arrsize = 8;
int cookies[arrsize] = {1,2,4,8,16,32,64,128};
int sum = sum_arr(cookies, arrsize);
std::cout << "Cookies eaten: " << sum << "\n";

}

or, with dynamic arrays:
int main() {

const int arrsize = 8;
int* cookies=new int[arrsize]{1,2,4,8,16,32,64,128};
int sum = sum_arr(cookies,arrsize);
std::cout << "Cookies eaten: " << sum << "\n";
delete[] cookies;

}

With rarrays, the size comes with the array, via the
size() and extent() methods:
#include <iostream>
#include <rarray>

int sum_arr(const rvector<int>& arr) {
int total = 0;
for (int i = 0; i < arr.size(); i++)

total += arr[i];
return total;

}

int main() {
auto cookies = make_rarray({1,2,4,8,16,32,64,128});
int sum = sum_arr(cookies);
std::cout << "Cookies eaten: " << sum << "\n";

}

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 28 / 32

Pass a 2d array into a function
#include <iostream>
int sum_arr(int** p, int nrows, int ncols) {

int total = 0;
for (int i = 0; i < nrows; i++)

for (int j = 0; j < ncols; j++)
total += p[i][j];

return total;
}
int** allocate_matrix2(int nrows, int ncols) {...}
void deallocate_matrix2(int** p) {...}
int main() {

int nrows=3, ncols=4;
int** p = allocate_matrix2(nrols, ncols);
for (int i = 0; i < nrows; i++) {

for (int j = 0; j < ncols; j++) {
p[i][j] = i + j;
std::cout << p[i][j] << " ";

}
std::cout << "\n";

}
std::cout<<"Total="<<sum_arr(p,nrows,ncols)<<"\n";
deallocate_matrix2(p, nrows);

}

#include <iostream>
#include <rarray>
int sum_arr(const rmatrix<int>& p) {

int total = 0;
for (int i = 0; i < p.extent(0); i++)

for (int j = 0; j < p.extent(1); j++)
total += p[i][j];

return total;
}

int main() {
int nrows=3, ncols=4;
rmatrix<int> p(nrows,ncols);
for (int i = 0; i < p.extent(0); i++) {

for (int j = 0; j < p.extent(1); j++) {
p[i][j] = i + j;
std::cout << p[i][j] << " ";

}
std::cout << "\n";

}
std::cout << "Total=" << sum_arr(p) << "\n";

}

Comparing passing 2d arraysRamses van Zon Arrays and Objects PHY1610, Winter 2025 29 / 32

Returning an rarray from a function

This is an issue for dynamically allocated arrays:
which part of the code should deallocate?
No problem with rarray:
rmatrix<double> zeros(int n, int m) {

rmatrix<double> r(n,m);
r.fill(0.0);
return r;

}

int main() {
rmatrix<double> s = zeros(100,100);
return s[99][99];

}

No hidden copies (rarray fully supports C++11 move semantics)
No need to deallocate s, done automatically by destructor.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 30 / 32

For comparison: The vector class (don’t do this!)

A quick warning about the vector class, which you will bump into if you start poking around. The vector
class has advantages, and is quite good for 1D arrays.
However, generalizing the vector class to higher dimensions quickly becomes extremely ugly and
non-contiguous.
using std::vector;
int n = 256; // size per dimension
vector<vector<vector<float>>> v(n);// allocate for top dimension
for (int i=0;i<n;i++) {

v[i].reserve(n); // allocate vectors for middle dimension
for (int j=0;j<n;j++)

v[i][j].reserve(n); // allocate elements in last dimension
}

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 31 / 32

Note on the future:

C++20

C++20 allows to write a[i,j] instead of a[i][j].
Before C++20, a[i,j] meant a[j].

C++23

C++23 has a “non-owning” multidimensional view on a pointer called mdspan.
No compiler support, but a reference implementation exists.
Non-owning: Still much allocate and deallocate your own memory first.

C++26

There is proposal for C++26 to include an owning multidimensional array type, mdarray.

Ramses van Zon Arrays and Objects PHY1610, Winter 2025 32 / 32

	Object Oriented programming
	Back to multi-dimensional arrays

