
C++ by Example

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 30 / 88

Back to the C++ example

Here is, again, the code that prints “Hello, world!”:
// @file helloworld.cpp
// Hello world program in C++
#include <iostream>
using std::cout;

int main()
{

cout << "Hello, world!\n";
}

Let’s look at what each line in this code means:

Lines starting with // are comments and are
ignored by the compiler.

Printing to console is in a library called
iostream, which needs to be included

We tell the compiler that we’re using the
object cout (console output)

int main is a function, and is, by definition,
called when the program is run.

What that function does is enclosed in curly
braces { and }.

cout << THING prints that THING.

Statements end in a semi-colon, i.e. ;

Strings, i.e., literal text that is not code, has
to be given between quotation marks ”. . . “.

\n inside a string is a newline and means the
next console output should start on the
next line.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 31 / 88

Another C++ Example: Input and variables
// @file inputex.cpp
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age;
cin >> age;
cout << "You typed: \n"

<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

}

This program uses many std:: objects, so
we import all of that namespace.

(not generally a good idea)

int main starts by defining a variable named
name of type string.
All variables have a type in C++

It reads from cin (console in, i.e., keyboard)
into the existing variable name

It also defines and reads an age variable,
which is of type int.

And it reports what was typed by the user.

Note that variables and their types must be defined before they can be used!

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 32 / 88

Let’s add a conditional statement
// @file inputex.cpp
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
if (age <= 0) {

cout << "Something is wrong!\n";
} else {

cout << "You typed: \n"
<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

}
}

Depending on the age variable, the program
prints one thing or another, using if/else.

Note that the code for the “one thing” has to
be in a code block, delineated by curly braces,
i.e. {. . . } .

Similarly, the else code block is delineated by
braces.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 33 / 88

Let’s add a return value
// @file inputex.cpp
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
if (age <= 0) {

cout << "Something is wrong!\n";
return 1;

} else {
cout << "You typed: \n"

<< "Name: " << name << "\n"
<< "Age: " << age << "\n";

return 0;
}

}

In addition to errors writing to console, we
return an exit code to the shell indicating
success (0) or failure (non-zero).
The value returned by main must be an int.

$ g++ -std=c++17 -o inputex inputex.cpp
$ echo Alex -1 | ./inputex
Something is wrong
$ echo $?
1
$ echo Alex 48 | ./inputex
You typed:
Name: Alex
Age: 48
$ echo $?
0

In bash, the exit code of the last executed
command is stored in the variable $?.
Here, bash types input with “echo” and
”pipes” that into “inputex”.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 34 / 88

How to ask again: Repetition
#include <iostream>
#include <string>
using namespace std;
int main()
{

string name;
cout << "Type your name: ";
cin >> name;
cout << "Type your age: ";
int age = -1;
cin >> age;
while (age <= 0) {

cout << "Something is wrong!\n";
cout << "Type your age again: ";
cin >> age;

}
cout << "You typed: \n";
cout << "Name: " << name << "\n";
cout << "Age: " << age << "\n";

}

The idea here is to keep asking numbers for
the age variable until a positive one is given.

The while construct is good for this.

But this can fail if we do not give an integer.
(will fix later)

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 35 / 88

Arrays
#include <iostream>
#include <string>

using namespace std;
int main() {

string name;
cout << "Type your name: ";
cin >> name;
int nmax = 10;
int numbers[nmax] = {0,0,0,0,0,0,0,0,0,0};
int n;
for (n = 0; n < nmax; n++) {

string word;
cout << "Type a number (-1 to stop): ";
cin >> word;
numbers[n] = stoi(word);
if (numbers[n] == -1)

break;
}
cout << "You typed: \n";
cout << "Name: " << name << "\n";

cout << "Numbers:";
for (int i = 0; i < n; i++) {

cout << " " << numbers[i];
}
cout << "\n";

}

Purpose of this code is get several numbers
and store them.

C++ supports ”C-style automatic arrays”.
numbers is defined as an array by putting
the number of elements in square brackets.

Also use square brackets for element access.

The first element is element [0]

The for loop is suitable for iterating over
such an array.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 36 / 88

Vectors
#include <iostream>
#include <string>
#include <vector>
using namespace std;
int main() {

string name;
cout << "Type your name: ";
cin >> name;
int nmax = 10;
vector<int> numbers;
int n;
for (n = 0; n < nmax; n++) {

string word;
cout << "Type a number (-1 to stop): ";
cin >> word;
numbers.push_back(stoi(word));
if (numbers[n] == -1)

break;
}
cout << "You typed: \n";
cout << "Name: " << name << "\n";

cout << "Numbers:";
for (int number : numbers) {

cout << " " << number;
}
cout << "\n";

}

Here again we want to get several numbers
and store them.

But we’re using the C++ standard vector.

These have variable sizes.

Can use square brackets are used for
indexing, with the first element begin [0].

But they also support range-based for loop.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 37 / 88

Functions
The code is starting to look a bit messy; we can make it clearer with some functions.

#include <iostream>
#include <string>
#include <vector>
using namespace std;
string getword(const string& prompt) {

string result;
cout << prompt;
cin >> result;
return result;

}
int getint(const string& prompt) {

while (true) {
string word = getword(prompt);
try {

return stoi(word);
} catch (invalid_argument& e) {

cout << "Error: invalid input\n";
if (cin.eof()) return -1;

}
}

}

int main() {
string name = getword("Type your name: ");
int nmax = 10;
vector<int> numbers;
while (true) {

int x = getint("Type a number (-1 to stop): ");
if (x != -1)

numbers.push_back(x);
if (numbers.size() == nmax or x == -1)

break;
}
cout << "You typed: \n";
cout << "Name: " << name << "\n";
cout << "Numbers:";
for (int number : numbers) {

cout << " " << number;
}
cout << "\n";

}

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 38 / 88

Dealing with input errors
You may have noticed thet the getint function does something interesting to catch errors.

We could just have
int getint(const string& prompt) {

string word = getword(prompt);
return stoi(word);

}

but this would crash when the word does not
contain an integer.

This code can handle that:
int getint(const string& prompt) {

while (true) {
string word = getword(prompt);
try {

return stoi(word);
} catch (invalid_argument& e) {

cout << "Error: invalid input\n";
if (cin.eof()) return -1;

}
}

}

Catching errors using exceptions

Exceptions can be used to catch unexpected events, like entering a non-number for age.
This goes via the try/catch construct.
If stoi encounters an error, an exception is “thrown”.
The exception is caught by the catch clause (in fact of a specific type).

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 39 / 88

C++ Details

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 40 / 88

C++ Details: Variable definition
type name [=value];

Here, type may be a:

floating point type:

float, double, long double,
std::complex<float>, ...

integer type:

[unsigned] short, int, long, long long

character or string of characters:

char, char*, std::string

boolean i.e., truth value: bool

array, pointer, class, structure, . . .

Examples:
int a;
int b;
a = 4;
b = a + 2;

float f = 4.0f;
double d = 4.0;
d += f;

char* str = "Hello There!";

bool itis2018 = false;

Non-initialized variables are not 0, but have
random values!
const

The type can be proceeded by const to make it
immutable.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 41 / 88

C++ Details: Functions

Function = a piece of code that can be reused.

A function has:
1 a name
2 a set of arguments of specific type
3 and returns a value of some specfic type

These three properties are called the function’s signature.

To write a piece of code that uses (”calls”) the functions, we only need to know its signature or
interface;

To make the signature known, one has to place a function declaration before the piece of code that is
to use the function.

The actual code (function definition) can be in a different file or in a library.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 42 / 88

C++ function example
// funcexample.cpp

// external function declarations:
#include <iostream>
#include <cmath>

// function declaration:
double geometric_mean(double a, double b);

// main function to call when program starts:
int main() {

double x = 16.3;
double y = 102.4;
std::cout << geometric_mean(x,y) << "\n";

}

// function definition:
double geometric_mean(double a, double b) {

return sqrt(a*b);
}

$ ssh USERNAME@teach.scinet.utoronto.ca

$ module load gcc

$ g++ -std=c++17 -o funcexample funcexample.cpp

$./funcexample
40.8549

$

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 43 / 88

C++ Details: Functions
Function declaration (prototype/signature/interface)
returntype name(argument-spec);

argument-spec = comma separated list of variable definitions

Function definition (code/implementation)
returntype name(argument-spec) {

statements
return expression-of-type-returntype ;

}

Functions which do not return anything have to be declared with a returntype of void.
Functions which have a non-void return type must have a return statement (except main).
The function definition can double as the declaration if it preceeds all uses of it in the same source
file.

Function call
var = name(argument-list);
f(name(argument-list));
name(argument-list);

argument-list = comma separated list of valuesRamses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 44 / 88

C++ Details: Scope

Variables do not live forever, they have well-defined scopes in which they exist. These are the rules:

If you define a variable inside a code block, it exists only until the code hits the closing curly brace (})
that correspond to the opening curly brace ({) that started the block. This is its local scope.

The variable will only be known in that code block and its subblocks.

If you call a function from a code block, variables from that block will not be known in the body of the
function.

It is possible to define variables outside of any code block; these are global variables. Avoid those.

When a variable goes out of scope, the memory associated with it is returned to the system, except for
memory that was dynamically allocated.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 45 / 88

C++ Details: Arguments by value or by reference

Passing function arguments by value
// passval.cpp
#include <iostream>

void inc(int i) {
i = i + 1;

}

int main() {
int j = 10;
inc(j);
std::cout << j << "\n";

}

$ g++ -std=c++17 -o passval passval.cpp
$./passval
10
$

j is set to 10.

j is passed to inc,

where it is copied into a variable called i.

i is increased by one,

but the original j is not changed.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 46 / 88

C++ Details: Arguments by value or by reference

Passing function arguments by reference
// passref.cpp
#include <iostream>

void inc(int &i) {
i = i + 1;

}

int main() {
int j = 10;
inc(j);
std::cout << j << "\n";

}

$ g++ -std=c++17 -o passref passref.cpp
$./passref
11
$

j is set to 10.

j is passed to inc,

where it referred to as i (but it’s still j).

i is increased by one,

because i is just an alias for j,
j reflects this change.

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 47 / 88

C++ Details: Operators
Arithmetic

a+b Add a and b

a-b Subtract a and b

a*b Multiply a and b

a/b Divide a and b

a%b Remainder of a over b

Logic

a==b a equals b

a!=b a does not equal b

!a a is not true (also: not a)

a&&b both a and b are true (also: a and b)

a||b either a or b is true (also: a or b)
Assignment

a=b Assign a expression b to the variable b

a+=b Add b to a (result stored in a)

a-=b Substract b from a (result stored in a)

a*=b Multiply a with b (result stored in a)

a/=b Divide a by b (result stored in a)

a++ Increase value of a by one

a-- Decrease value of a by one

Logic/Numeric

a<b is a less than b

a>b is a greater than b

a<=b is a less then or equal to b

a>=b is a greater than or equal to b

Ramses van Zon Scientific Computing for Physicists PHY1610H 2025 Winter 48 / 88

