
Advanced Research Computing Training

for EDIA Champions

Ramses van Zon
December 5, 2024

Topics in this session:

1 What is Advanced Research Computing?

2 ARC Resources

3 Accessing and Operating ARC Resources

4 Programming a Supercomputer

5 Final Tips and Conclusions

1

What is Advanced Research Computing?

2

I.e., what are we talking about here?

Research Computing Whenever you’re doing research that depends on
computer.

Advanced Research Computing (ARC) Whenever your own computer no longer
suffices; you may need expert advice.

Supercomputing When the computer that suffices is a large, shared, custom
system or cluster.

High-Performance Computing (HPC) When the speed of your computation
matters, and you need parallel processing. I.e., nearly always.

3

So, ARC:

is needed when:

My problem takes too long⟶more/faster computation
My problem is too big⟶more memory
My data is too big⟶more storage

involves:

hardware - cpus, multi-processors, network
algorithms - parallelism, efficiency
software - parallel programming, compilers, optimization, libraries, apps
data management - RDM plan, data transfer, storage

4

Examples where ARC is needed

(the Niagara supercomputer)

Computational Fluid Dynamics

Molecular Dynamics and N-Body Simulations

Smooth Particle Hydrodynamics

Monte Carlo Simulations

Computational Quantum Chemistry

Bioinformatics

Digital Humanities

Data Science and Machine Learning

(insert your research area here)

5

The free lunch is over

There once was a time in which
computer processor speeds
steadily increased in newer
generations.

Due to physical limitations, this
trend stopped around 2005, and
advances in the speed of
processors, memory, and storage,
have plateaued.

So:

Modern HPCmeansmore hardware, not faster hardware.

Thus parallel computing is required.

6

Wait, what about Moore's Law?

Moore’s law…

describes a long-term trend in the
history of computing hardware: The
number of transistors that can be
placed inexpensively on an integrated
circuit doubles approximately every
two years.

But…

Moore’s Law didn’t promise us speed.
More transistors but getting hard to push clock speed up.
Power density is limiting factor.
Instead: more cores at fixed clock speed.

7

All good, more cores = faster, right?

More cores is like having more
workers.

Human Resources Analogy

Problem: job needs to get done faster

can’t hire substantially faster
people
can hire more people
must alter workflow from a
one-person job

Solution:

split work up between people
requires rethinking the workflow process
requires administrative overhead

8

ARC Resources

9

This is not your laptop!

The architecture of supercomputers is different than that of your own computer,
and this matters.

There are a few prototypical architectures you should be aware of:

Clusters

Multi-core computers

Accellerators

10

Clusters

~ ~
~

~

n n
n

n

Node1

Node2

Node3

Node4

�
�
�
�
�
�
�
�
�
�
�
���

����*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

�����

?

�
�

�
�	

Take existing powerful standalone computers,
called nodes.

Link them together through a network (a.k.a an
“interconnect”).

Easy to build and easy to expand.

Because each node• has its ownmemory a.k.a.
RAM■, these are called distributed memory
systems.

Nodes communicate and transfer data through
messages.

11

Multi-core computers

Node

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

A collection of processors on one node that
can see and use the samememory.

Limited number of cores, and much more
expensive when the number of cores is large.

Coordination/communication done through
memory.

Also known as shared-memory systems.

Your desktop, laptop and cell phone likely use this kind of architecture.

12

Accelerators

Systems with accelerators have nodes which
contain a device like a GPU.

Accelerators are very fast and good at massively
parallel processing (having 500-2000+ GPU cores).

More complicated to program.

Implicit programming using frameworks like
Tensorflow or PyTorch.

Needs to be combined with at least some ‘host’
code on the CPU cores: heterogeous computing

13

Top 5 supercomputers (November 2024)

#1 El Capitan (at Lawrence Livermore National Labs in the USA)
11,136 nodes, each with 96 cores and 4 GPUs, 512GB of memory, with a “Slingshot”
network.

#2 Frontier (at Oak Ridge National Labs in the USA)
9,472 nodes, each with 64 cores and 8 GPUs, 512GB of memory, with a “Slingshot”
network.

#3 Aurora (at Argonne National Labs in the USA)
10,624 nodes, each with 104 cores and 6 GPUs, 1TB of memory with a “Slingshot”
network.

#4 Eagle (in Microsoft Azure in the USA)
1,800 nodes, each with 48 cores, 8 GPUs, with an “Infiniband” network.

#5 HPC6 (at Eni in Italy)
3,472 nodes, each with 64 cores and 4 GPUs, with a “Slingshot” network.

See https://www.top500.org, a ranking based on the HPL benchmark.

14

https://www.top500.org

Available supercomputers in Canada

#190 Narval (Calcul Québec) https://docs.alliancecan.ca/wiki/Narval
1,181 nodes with 64 cores, 256+GB RAM, infiniband network.
159 nodes with 48 cores and 4 GPUs, 512 GB RAM, same network.

#282 Niagara (SciNet/U.Toronto) https://docs.alliancecan.ca/wiki/Niagara
2,024 nodes with 40 cores, 192GB RAM, with a dragonfly infiniband network.
Its GPU expansion,Mist, is a separate cluter, like a 50x smaller Summit.

#301 Cedar (at SFU) https://docs.alliancecan.ca/wiki/Cedar
724 nodes with 32 cores, 128+GB RAM, OmniPath network.
1,408 nodes with 48 codes, 187+GB RAM, same network.
338 nodes with 24 cores and 4 GPUs, 128+GB RAM, same network.

Béluga (Calcul Québec) https://docs.alliancecan.ca/wiki/Beluga
802 nodes with 40 cores, 92+GB RAM, Infiniband network.
172 nodes with 40 cores and 4 GPUs, same network.

Graham (SHARCNET/U.Waterloo) https://docs.alliancecan.ca/wiki/Graham
1119 nodes with 32+ cores, 125+GB RAM, 160 nodes with 32 cores and 2 GPUS, 124GB
RAM, …

15

https://docs.alliancecan.ca/wiki/Narval
https://docs.alliancecan.ca/wiki/Niagara
https://docs.alliancecan.ca/wiki/Cedar
https://docs.alliancecan.ca/wiki/Beluga
https://docs.alliancecan.ca/wiki/Graham

Working on shared, remote resources

If you need a supercomputer, your computation has outgrown your
computer or laptop.

Few people can afford their own supercomputer: you will need to use a
supercomputer that you share with potentially thousands of others.

Due to the internet, resources can be used remotely, allowing for more
sharing and larger systems.

Sharing is good. Shared resources get better utilization. Good for budget,
good for the planet.

Because supercomputers are remote and shared resources, these machines need
to be used quite differently from how you use your own computer.

16

Accessing and Operating ARC Resources

17

ARC systems are remote

You’re at your computer (“terminal”)

The supercomputer is in a data centre
somewhere (“server”).

You must connect remotely using ssh
(“secure shell”).

You must interact with the supercomputer
using the command line.

18

Demonstration: access to Narval

Logging in

Narval is one of the Alliance’s ARC clusters.

If you do not have an account, we’ll get to that.

If you have an account, you can follow along.

To log in, type on the command line (could be in a local terminal in
MobaXTerm in Windows):

$ ssh USERNAME@narval.alliancecan.ca

and type the password.

You’d be asked for your Second Factor (MFA is mandatory).

19

Transfering files

To download files when logged in to an ARC cluster, use

$ wget URL

To copy files to or from your computer:

$ scp filename USERNAME@narval.alliancecan.ca:path/filename
$ scp USERNAME@narval.alliancecan.ca:path/filename filename

But these commands must be used on your terminal, and not when already
logged into the ARC cluster.

You have a home directory and a scratch directory.
You may also have a group-based project directory.

The home directory is stored in the environment variable $HOME, and is
backed up.

The scratch directory may be stored in $SCRATCH, or present as a link in your
$HOME. It is not backed up, but much larger than $HOME.

20

Getting access

1 Register with the Alliance CCDB:
https://ccdb.alliancecan.ca/account_application
PIs must get an account one first, so they can sponsor your account at no cost.
The approval process typically takes 1-2 business days.

2 Setup Multi-factor Authentication
https://docs.alliancecan.ca/wiki/Multifactor_authentication

3 Recommended: Setup SSH keys

For Niagara (and likely other clusters in the future)

4 Go to
https://ccdb.alliancecan.ca/services/opt_in
and click on the “Join” button next to Niagara and Mist.

5 After a business day or two, you get an email confirming your access to
Niagara and Mist.

21

https://ccdb.alliancecan.ca/account_application
https://docs.alliancecan.ca/wiki/Multifactor_authentication
https://ccdb.alliancecan.ca/services/opt_in

ARC systems are shared

We’re now on a login node together with all other folks working on this Narval
instance. Login nodes are not for computing!

All other nodes of a cluster like Narval are compute nodes.

To run on compute nodes, you need to create a job script that contains a
request for specific resources for a specific time.

You pass this job script to the scheduler.
The scheduler used on Narval is called SLURM.
To submit a job, use the sbatch command.

The scheduler allocates compute resources to your job and runs it in due time.

22

Demonstration #2: running jobs

Log in to Narval ssh USERNAME@narval.alliancecan.ca

Change directory to
scratch

cd scratch

Download code
wget https://tinyurl.com/iatgz -O ia.tgz
tar xzvf ia.tgz

Change to the new
directory

cd ia

Submit the job
‘sweep_bondbreak.sh’

sbatch sweep_bondbreak.sh

Check the status of
your job(s)

squeue --me

Once completed: less slurm-*.out

23

Job script: sweep_bondbreak.sh
#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --time=01:00:00
#SBATCH --mem=1000M

This file runs a parameter sweep for
an application called 'bondbreak'.

module load StdEnv/2023 python/3.10.13 scipy-stack/2024b

T=2.2 # temperature value
NUMSEEDS=500 # number of seeds
OUT=output-$TEMP-$SLURM_JOB_ID
mkdir -p $OUT

Run multiple cases with different random seeds
for S in $(seq $NUMSEEDS) ; do

echo "Simulation $S of $NUMSEEDS"
./bondbreak -t $T -s $S -f $OUT/$T-$S.dat -l $OUT/$T-$S.log

done

Extract the breakage times from the logs
awk '/BREAKAGE DETECTED/{print $8}' $OUT/$T-*log > $OUT/breaktimes.dat

24

Why a scheduler?

The compute nodes/cores need to be fairly shared among all users.

You can’t just reserve cores for particular users, or at least some of them
wouldn’t be utilized all the time (which is a waste, as other users could have
used them).

So instead of having fixed reservations, users must submit jobs.

Each job must specify the resources it needs (time/cpus/gpus).

A program called the scheduler takes those resource requests and finds a
time slot and (set of) compute node(s) to allocate for the job.

On a busy system, the allocated time is usually in the future, and often unknown.

I.e., you have to wait.

Scheduling for a whole cluster is hard and takes time, therefore there
are limits to how many jobs you can submit as well as a minimum size.
If you havemany small jobs to do, bunch them up and use GNU Parallel
(more on that later).

25

Scheduling factors

Priority Allocations

After an annual competition, priority allocations are given to selected groups.

Past usage

If a group has recently used a lot of resources, their priority goes down.

Time

The longer a job is in the queue, the more priority it accrues.

Available resources and job sizes

Requests for scarce resources can lead to much longer wait times.

Requests for moderate resources (e.g. a single node for 30 minutes) can lead
to shorter wait times if there are ‘holes’ in the schedule that it can fill.

The scheduler has to sort all jobs using these criteria & give resources to the jobs
with the most priority.

26

Using the scheduler

Some of the most common sbatch parameters are:

amount of time -t --time
number of nodes -N --nodes
number of tasks -n --ntasks
number of tasks per node --ntasks-per-node
number of threads per task -c --cpus-per-task
number of gpus per node -G --gpus-per-node
amount of memory --mem
scheduler account to use -A --account
use reserved nodes --reservation

27

Using the scheduler

Commands to interact with the scheduler:

submit job sbatch
see queued jobs and their status squeue
cancel a job scancel
see job stats after completion seff
get short interactive job on a compute node salloc

28

Programming a Supercomputer

29

How to program a supercomputer

The job script is in the bash programming language, but often starts one
particular application at its core.

Core applications are written in a programming languages that need to be
translated into machine code that the computer can understand.

For compiled languages, like C, C++, Fortran, or CUDA/HIP, the translation is
done ahead of the computation for the application as a whole. The compiler
analyzes the entire code and optimizer the resulting machine code. Some
compilers can create applications that run on GPUs (CUDA/HIP and certain
OpenMP/OpenACC compilers).

For scripted applications, like bash, Python and R, translation is done while
the application runs, one line at a time. This tends to be much more
inefficient than compiled language, but scripted languages tend to be easier
to learn and more flexible.

Scripted languages may use packages that are themselves written in a compiled
languages (e.g. Numpy and SciPy), or frameworks that compile on the fly
(e.g. Tensorflow) to alleviate the inefficiencies associated with scripting languages.

30

Parallelism and concurrency

Remember: there are no faster
compute cores, just more.

Speedup must come from having
something to do for all these
cores.

Find parts of the program that
can done independently, and
therefore concurrently.

There must be many such parts.

Their order of execution should
not matter either.

Data dependencies limit
concurrency.

31

Parameter ``sweep'': best case scenario

Aim is to get results
from amodel as a
parameter varies.

Can run the serial
program on each
processor at the
same time.

Getmore done.

'

&

$

%

𝜇 = 1

'

&

$

%

𝜇 = 2

'

&

$

%

𝜇 = 3

'

&

$

%

𝜇 = 4

? ? ? ?

&%
'$
Answer

&%
'$
Answer

&%
'$
Answer

&%
'$
Answer

32

Throughput

Howmany tasks can you do per unit time?

throughput =𝐻 = 𝑁
𝑇

Maximizing𝐻 means that you can do as much as possible.

Independent tasks: using 𝑃 processors increases𝐻 by a factor 𝑃iiii
?���� vs.

i
?����

i
?����

i
?����

i
?����

33

Scaling --- throughput

How a problem’s throughput
scales as processor number
increases (“strong scaling’ ’).

In this case, linear scaling:

𝐻 ∝ 𝑃

This is Perfect scaling.

34

Scaling -- speed-up

Howmuch faster the problem is
solved as processor number
increases.

Measured by the serial time
divided by the parallel time

𝑆 = 𝑇𝑠𝑒𝑟𝑖𝑎𝑙
𝑇 (𝑃) ∝ 𝑃

For embarrassingly parallel
applications: Linear speed up.

35

Non-ideal case 1: non-parallelizable work

�� ��Partition data

? ? ? ?'

&

$

%
region 1

'

&

$

%
region 2

'

&

$

%
region 3

'

&

$

%
region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Say we want to integrate some
tabulated data.

Integration can be split up, so
different regions are summed by
each processor.

Non-parallelizable parts:

First need to get data to
processor
At the end bring together all the
sums.

36

Amdahl's law

𝑇𝑠 ≡ time for serial part (Partition+Reduction)
𝑇𝑝 ≡ time for parallelizable parts combined

Speed-up, with 𝑓 ≡ 𝑇𝑠/(𝑇𝑠 + 𝑇𝑝) the
serial fraction,

𝑆 = 1
𝑓 + (1 − 𝑓)/𝑃

(example for 𝑓 = 5%)Note that

lim
𝑃→∞

𝑆 = 1
𝑓

Serial part dominates asymptotically.
Speed-up limited, no matter size of 𝑃 .

37

Non-ideal case #2: non-locality

Moving data around slows things down because communication is slower
than computing.

Not computing where the data resides or was generated, requires data
movement and wastes time.

Many memory and storage systems hide locality, using caches or pulling data
automatically.

To influence the locality, you need to change the data access pattern.

Communication and data motion can rarely be completely avoided, but can be
minimized.

38

Non-ideal case #3: load imbalance

Suppose you have 32
computations to do, and they are
all independent.

That would scale perfectly, but
this time there is a catch:

The different computations
takes very different times.

And we can’t know how long a
computation will take before we
run it.

Let’s say we want to run these
computations on 8 cores.

Easy, right? We’ll just run 4 sets of 8!

39

Non-ideal case #3: balance the load

Easy, right? We’ll just run 4 sets of 8!

Due to the load imbalance, only 42%
used.
Speedup: 𝑆 = 3.4We can do better!

Let’s give a new task as soon as a core
is done:

Much better: 72% is used.
Speedup: 𝑆 = 5.8

Could try to code this ourselves, but
there’s a tool that implements that:
GNU Parallel+

+ O. Tange (2018): GNU Parallel 2018, March 2018, https://doi.org/10.5281/zenodo.1146014.

40

GNU Parallel: managing subjobs of different durations

Versatile tool, especially for text input.

Gets your many cases assigned to different
cores without much hassle.

Invoked using the parallel command.

O. Tange (2018): GNU Parallel 2018, March 2018,
https://doi.org/10.5281/zenodo.1146014.
https://www.gnu.org/software/parallel

41

https://doi.org/10.5281/zenodo.1146014
https://www.gnu.org/software/parallel

GNU Parallel example

Load the required modules

The “-j ...” flag indicates for
GNU parallel to run 8 subjobs at a
time.

The “--nodes” parameter makes
sure all allocated cores are on the
same node.

If you can’t fit as many subjobs
onto a node as there are cores
due to memory constraints,
specify a different “-j” value.

Put the commands for a given
subjob separate lines.

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8
#SBATCH --time=1:00:00
#SBATCH --job-name=gnuparallelx8
#SBATCH --mem=4000M
module load python/3.10.13
module load scipy-stack/2023a
P=$SLURM_CPUS_PER_TASK
Distribute 32 runs over 8 cores.
parallel -j $P <<EOF
cd jobdir1; ../app; echo "1 done"
...
cd jobdir32; ../app;echo "32 done"
EOF

42

How does this balance the load?

GNU parallel assigns subjobs to the processors.

As subjobs finish it assigns new subjobs to the free processors.

It continues to assign subjobs until all subjobs in the subjob list are assigned.

Consequently there is built-in load balancing!

You can use GNU parallel across multiple nodes as well.

It can also log a record of each subjob, including information about subjob
duration, exit status, etc.

43

Demonstration #3: compute in parallel

The script sweep_bondbreak.sh executes 500 repeats of the computation of
the bond breakage time, one by one.

How long did sweep_bondbreak.sh take? Too long!

These 500 cases could run in parallel.

Now let’s use the modified version of par_sweep_bondbreak.sh that uses
GNU Parallel to parallelize the computation using 8 cores on a single
compute node of Narval.

After submitting this modified script to the scheduler, let’s see how it took
now.

44

Final Tips and Conclusions

45

No magic speedups

Just asking for more resources is not enough.

Conversely, not asking for resources (e.g. leaving out --cpus-per-task) kills
any paralellization.

Note that output can be in any order when things run in parallel.

Executing scripts on the command line makes them run on the login node.
Not what you want!

46

Do not trust code you do not understand

Beware of copy-paste: Don’t include lines you do not understand.

Related: Be wary of recipes you find online. Even if they are for Linux, and all
supercomputers run Linux, they are often written for a machine that you own
and have exclusive administrative rights to.

47

Use best practices with your code

There is no such thing as one-off codes or scripts. If it was worth writing, it’s
worth running again, and someone (could be you) could use it.

If it’s a big, ununderstandable mess, no one want to touch it and all the effort
will need to be repeated. Plus, do you really trust its results if you do not
understand it?

Professional software developers deal with this all the time, but
computational researchers are focused on results.

Putting in a bit of effort in writing maintainable, reproducible code, however,
can pay off big in future projects.

So let’s consider some common, useful best practices in research computing.

48

Automate everything

Write scripts for any computation or data
processing.

This means you have a precise record, you can
rerun them, and you can adapt them.

If GUIs are part of your workflow, try to replace
it with commands.

GUIs are particularly awkward for record
keeping: instead of a script, you would need
to keep a written log of every mouse
movement, click and keystroke.

Use makefiles or cmake for automating
building software.

49

Use version control

Version Control is a tool for managing
changes in a set of files.

Keeps historical versions for easy tracking.

It essentially takes a snapshot of the files
(code) at a given moment in time.

Why use it?

Makes collaborating on code
easier/possible/less violent.

Helps you stay organized.

Allows you to track changes in the code.

Allows reproducibility in the code.

And when something goes wrong, you can
back up to the last working version.

50

Comment and document everything

You must document your code. Must. Not optional. Documentation of code
comes in many forms:

sensible variable, function, class, and module names.

comments in the code.

help commands, doc-strings, or other built-in feedback.

But why?

Six months from now you’re not going to remember the motivation for writing
that function.
So write it down in the code somewhere.

Write a README or a full manual if you expect others to use the code without
reading all of it.

Note: there is no such thing as self-documenting code.

51

Make your code and scripts portable

Try it on a different computer.

Don’t hard-code paths, use variables like $HOME.

Use #!/usr/bin/env in shebangs for scripts.
(and always use shebangs!)

Make as few assumption about the (super)computer the code will run on as
possible.
Add an explicit requirements file with your code.

Stick to programming language standards.
This avoid the “but it works on my computer” bug.

52

Checkpoint

Things can go wrong while your job is running.

Could be due to your job (e.g. takes too long or too much memory and crashes)
Could be due to your account (e.g. out of space).
Could be due to the system (e.g. file system issues)
Could be due to the external infrastructure (e.g. power outage)

To make sure not to have wasted computation time in these cases, you
checkpoint

Checkpointing is writing out enough information about the state of the
system to allow the computation to restart at the checkpoint.

Checkpoint could be implemented in the operating system and scheduler, but
this is so inefficient that is rarely is.
So your application needs to include a feature to just write and read the
checkpoint data.

GNU Parallel has this feature, using --joblog and --resume.
It won’t checkpoint within sub-jobs, though.

53

Optimize I/O

Home, scratch, and project all use a parallel file system.

Your files can be seen on all login and compute nodes.

These are high-performance file systems which provides rapid reads and
writes to large data sets in parallel frommany nodes.

But accessing data sets which consist of many, small files leads to poor
performance.

Do’s and don’ts

Avoid reading and writing lots of small amounts of data to disk.

Many small files on the system would waste space and would be slower to
access, read and write.

Write numerical data out in binary. Faster and takes less space.

Some file systems are better than others I/O heavy jobs and checkpoints.

When your files fit in memory, use ramdisk, which lives in memory.

54

Want to learn more?

about Linux, scheduling, programming, research data management, etc… ?

Check the following resources:

Wiki

https://docs.alliancecan.ca

Training Calendar

https://alliancecan.ca/en/services/advanced-research-computing/technical-
support/training-calendar

Regional LMSs and training:

https://scinet.courses
https://training.sharcnet.ca/courses
https://www.acenet.training
https://www.eventbrite.com/o/calcul-quebec-8295332683
https://training.westdri.ca/events/upcoming-training-fall-2024/

55

https://docs.alliancecan.ca
https://alliancecan.ca/en/services/advanced-research-computing/technical-support/training-calendar
https://alliancecan.ca/en/services/advanced-research-computing/technical-support/training-calendar
https://scinet.courses
https://training.sharcnet.ca/courses
https://www.acenet.training
https://www.eventbrite.com/o/calcul-quebec-8295332683
https://training.westdri.ca/events/upcoming-training-fall-2024/

Conclusions

I hope we’ve enlightened you about the business of advanced research
computing.

Common traits in using ARC include:

Shared resource, multiple users

Linux command line

Batch computing

Parallel processing

Shared, parallel file systems

Scheduling resources for fair
sharing

Remote connections

Graphical interfaces are rare
Thank you for your attention!

56

	What is Advanced Research Computing?
	ARC Resources
	Accessing and Operating ARC Resources
	Programming a Supercomputer
	Final Tips and Conclusions

