
Introduction to OpenMP

Alexey Fedoseev

December 2, 2024

Alexey Fedoseev Introduction to OpenMP December 2, 2024 1 / 38

Concurrency vs Parallelism

Figure 1: Concurrent, non-parallel execution

Figure 2: Concurrent, parallel execution

Alexey Fedoseev Introduction to OpenMP December 2, 2024 2 / 38

Shared Memory Computer

Alexey Fedoseev Introduction to OpenMP December 2, 2024 3 / 38

OpenMP

▶ Provides a set of compiler directives and library routines that used together to write
multi-threaded applications

▶ Simplifies writing multi-threaded programs in C, C++ and Fortran

▶ Most of the constructs in OpenMP are compiler directives.

#pragma omp parallel num_threads(4)

Alexey Fedoseev Introduction to OpenMP December 2, 2024 4 / 38

Example 1: Hello World

#include <stdio.h>
int main()
{

int ID = 0;
printf("hello(%d) ", ID);
printf("world(%d) \n", ID);
return 0;

}

$ gcc hello-world.c

Alexey Fedoseev Introduction to OpenMP December 2, 2024 5 / 38

Example 1: Hello World - Parallel version
1 #include <stdio.h>
2 #include <omp.h>
3 int main()
4 {
5 #pragma omp parallel
6 {
7 int ID = omp_get_thread_num();
8 printf("hello(%d) ", ID);
9 printf("world(%d) \n", ID);

10 }
11 return 0;
12 }

$ gcc -fopenmp hello-world.c

Alexey Fedoseev Introduction to OpenMP December 2, 2024 6 / 38

Example 1: Hello World - Parallel version

$./a.out
hello(2) hello(1) hello(0) hello(3) world(2)
world(1)
world(0)
world(3)

Alexey Fedoseev Introduction to OpenMP December 2, 2024 7 / 38

Fork-Join

Figure 3: Fork-join model on Wikipedia

Alexey Fedoseev Introduction to OpenMP December 2, 2024 8 / 38

https://en.wikipedia.org/wiki/Fork-join_model

Requesting global number of threads

#include <stdio.h>
#include <omp.h>
int main() {

omp_set_num_threads(8);
#pragma omp parallel
{

int thread_id = omp_get_thread_num();
int n_threads = omp_get_num_threads();
if (thread_id == 0) printf("There are %d threads\n", n_threads);

}
return 0;

}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 9 / 38

OMP_NUM_THREADS environmental variable
#include <stdio.h>
#include <omp.h>
int main() {

#pragma omp parallel
{

int thread_id = omp_get_thread_num();
int n_threads = omp_get_num_threads();
if (thread_id == 0) printf("There are %d threads\n", n_threads);

}
return 0;

}

$ export OMP_NUM_THREADS=8
$./a.out
There are 8 threads

Alexey Fedoseev Introduction to OpenMP December 2, 2024 10 / 38

Requesting local number of threads
#include <stdio.h>
#include <omp.h>
int main() {

#pragma omp parallel num_threads(8)
{

int thread_id = omp_get_thread_num();
int n_threads = omp_get_num_threads();
if (thread_id == 0) printf("There are %d threads\n", n_threads);

}
return 0;

}

$ export OMP_NUM_THREADS=16
$./a.out
There are 8 threads

Alexey Fedoseev Introduction to OpenMP December 2, 2024 11 / 38

Synchronization

High level synchronization

▶ critical

A section of code can only be executed by one thread at a time.

▶ atomic

Update of a single memory location.

▶ barrier

A barrier defines a point in the code where all active threads will stop until all threads have
arrived at that point.

Alexey Fedoseev Introduction to OpenMP December 2, 2024 12 / 38

Synchronization - critical

▶ Mutual exclusion: Only one thread at a time can enter a critical region.

double sum = 0;
#pragma omp parallel
{

int id = omp_get_thread_num();
#pragma omp critical
sum += work(id);

}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 13 / 38

Synchronization - atomic

▶ An atomic operation applies only to the single assignment statement that immediately
follows it. It is commonly used to update counters and other simple variables that are
accessed by multiple threads simultaneously.

double sum = 0;
#pragma omp parallel
{

int id = omp_get_thread_num();
#pragma omp atomic
sum += work(id);

}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 14 / 38

Synchronization - barrier

▶ Each tread waits until all threads arrive

#pragma omp parallel
{

int id = omp_get_thread_num();
var[id] = work(id);
#pragma omp barrier
res[id] = calc(id, var);

}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 15 / 38

single work sharing construct
▶ The single construct denotes a block of code that is executed by only one thread.

▶ A barrier is implied at the end of the single block (can remove the barrier with a nowait
clause).

#pragma omp parallel
{

do_work();

#pragma omp single
exchange_boundaries();

do_more_work();
}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 16 / 38

master construct

▶ The master construct denotes a structured block that is only executed by the master
thread.

▶ The other threads just skip it (no synchronization is implied).

#pragma omp parallel
{

do_work();
#pragma omp master
exchange_boundaries();
#pragma omp barrier
do_more_work();

}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 17 / 38

Parallel for loop

#include <stdio.h>
#include <omp.h>
int main() {

#pragma omp parallel for
for (int i = 0; i < 4*omp_get_num_threads(); i++)

printf("Thread %d, i = %d\n",
omp_get_thread_num(), i);

return 0;
}

$ gcc -fopenmp par-for.c

Alexey Fedoseev Introduction to OpenMP December 2, 2024 18 / 38

Parallel for loop

▶ Output

$./a.out
Thread 0, i = 0
Thread 2, i = 6
Thread 1, i = 3
Thread 3, i = 8
Thread 0, i = 1
Thread 2, i = 7
Thread 1, i = 4
Thread 3, i = 9
Thread 0, i = 2
Thread 1, i = 5

Alexey Fedoseev Introduction to OpenMP December 2, 2024 19 / 38

Parallel for loop
#include <stdio.h>
#include <omp.h>
int main() {

#pragma omp parallel num_threads(3)
{

#pragma omp for
for (int i = 0; i < 10; i++)

printf("Thread %d, i = %d\n",
omp_get_thread_num(), i);

}
return 0;

}

$ gcc -fopenmp specify-num-threads.c

Alexey Fedoseev Introduction to OpenMP December 2, 2024 20 / 38

Parallel for loop

▶ Output with 4 threads

$./a.out
Thread 0, i = 0
Thread 2, i = 6
Thread 1, i = 3
Thread 3, i = 8
Thread 0, i = 1
Thread 2, i = 7
Thread 1, i = 4
Thread 3, i = 9
Thread 0, i = 2
Thread 1, i = 5

▶ Output with 3 threads

$./a.out
Thread 1, i = 4
Thread 2, i = 7
Thread 0, i = 0
Thread 1, i = 5
Thread 2, i = 8
Thread 0, i = 1
Thread 1, i = 6
Thread 2, i = 9
Thread 0, i = 2
Thread 0, i = 3

Alexey Fedoseev Introduction to OpenMP December 2, 2024 21 / 38

The reduction clause

#include <stdio.h>
#include <math.h>
#include <omp.h>
#define N 1000000000
int main() {

double calc = 0;
#pragma omp parallel for reduction(+:calc)
for (long i = 0; i < N; i++)

calc += pow(-1,i) * 1.0/(2*i + 1);
printf("%.12f\n", 4*calc); return 0;

}

$ gcc -fopenmp for-reduction.c

Alexey Fedoseev Introduction to OpenMP December 2, 2024 22 / 38

The reduction clause

▶ Parallel output

$ time ./a.out
3.141592652589

real 0m5.440s
user 0m19.835s
sys 0m0.038s

▶ Serial output

$ time ./a.out
3.141592652588

real 0m12.562s
user 0m12.413s
sys 0m0.026s

Alexey Fedoseev Introduction to OpenMP December 2, 2024 23 / 38

The reduction clause

Operator Initial value
+ 0
* 1
- 0
min Largest positive number
max Most negative number
& (bitwise AND) ~0 (all bits are 1)
| (bitwise OR) 0
ˆ (bitwise XOR) 0
&& (logical AND) 1
|| (logical OR) 0

Alexey Fedoseev Introduction to OpenMP December 2, 2024 24 / 38

Data sharing

Shared data

The data defined outside of a parallel region is shared, which means visible and accessible by all
threads simultaneously. By default, all variables in the work sharing region are shared except the
loop iteration counter.

int x = 10;
#pragma omp parallel
{

x++;
printf("shared x is %d\n", x);

}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 25 / 38

Shared data

$ gcc -fopenmp shared-data.c && ./a.out
shared x is 12
shared x is 11
shared x is 13
shared x is 14

Attention!
All threads increment the same variable, so after the loop it will have a value of 10 plus the
number of threads; or maybe less because of the data races involved.

Alexey Fedoseev Introduction to OpenMP December 2, 2024 26 / 38

Data sharing

Private data

The data defined within a parallel region is private to each thread, which means each thread will
have a local copy and use it as a temporary variable. A private variable is not initialized and the
value is not maintained for use outside the parallel region. By default, the loop iteration
counters in the OpenMP loop constructs are private.

int x = 10;
#pragma omp parallel
{

int x; x = 5;
printf("private x is %d\n", x);

}
printf("shared x is %d\n", x);

Alexey Fedoseev Introduction to OpenMP December 2, 2024 27 / 38

Private data

$ gcc -fopenmp private-data.c && ./a.out
private x is 5
private x is 5
private x is 5
private x is 5
shared x is 10

Attention!
Stack variables in functions called from parallel regions are private.

Alexey Fedoseev Introduction to OpenMP December 2, 2024 28 / 38

Data Sharing Attribute Clauses

Some OpenMP clauses enable you to specify visibility context for selected data variables.

Attribute clause Description
private The private clause declares the variables in the list to be private to each

thread in a team.
firstprivate The firstprivate clause provides a superset of the functionality provided

by the private clause. The private variable is initialized by the original value
of the variable when the parallel construct is encountered.

lastprivate The lastprivate clause provides a superset of the functionality provided by
the private clause. The final value of a private variable is transmitted to
the shared variable outside the parallel construct.

Alexey Fedoseev Introduction to OpenMP December 2, 2024 29 / 38

Data Sharing Attribute Clauses

Attribute clause Description
shared The shared clause declares the variables in the list to be shared among all

the threads in a team. All threads within a team access the same storage
area for shared variables.

reduction The reduction clause performs a reduction on the scalar variables that
appear in the list, with a specified operator.

default The default clause allows the user to affect the data-sharing attribute of
the variables appeared in the parallel construct.

Alexey Fedoseev Introduction to OpenMP December 2, 2024 30 / 38

Data sharing - private clause
int x = 10;
#pragma omp parallel private(x)
{

x = 1;
printf("Inside x is %d\n", x);

}
printf("Outside x is %d\n", x);

$ gcc -fopenmp private-clause.c && ./a.out
Inside x is 1
Inside x is 1
Inside x is 1
Inside x is 1
Outside x is 10

Alexey Fedoseev Introduction to OpenMP December 2, 2024 31 / 38

Data sharing - firstprivate clause

int x = 10;
#pragma omp parallel firstprivate(x)
{

printf("Inside x is %d\n", x);
}
printf("Outside x is %d\n", x);

$ gcc -fopenmp first-private-clause.c && ./a.out
Inside x is 10
Inside x is 10
Inside x is 10
Inside x is 10
Outside x is 10

Alexey Fedoseev Introduction to OpenMP December 2, 2024 32 / 38

Data sharing - default clause
#include <stdio.h>
#include <omp.h>
int main() {

int arr[1000], x = 10;
#pragma omp parallel default(none)
{

x = 1; arr[0] = 2;
printf("Inside x is %d and arr[0] is %d\n",

x, arr[0]);
}
printf("Outside x is %d and arr[0] is %d\n",

x, arr[0]);
return 0;

}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 33 / 38

Data sharing - default clause
$ gcc -fopenmp default-clause.c
default-clause.c: In function 'main':
default-clause.c:7:5: error: 'x' not specified in enclosing 'parallel'

x = 1; arr[0] = 2;
~~ˆ~~

default-clause.c:5:10: error: enclosing 'parallel'
#pragma omp parallel default(none)

ˆ~~
default-clause.c:7:13: error: 'arr' not specified in enclosing 'parallel'

x = 1; arr[0] = 2;
~~~ˆ~~

default-clause.c:5:10: error: enclosing 'parallel'
#pragma omp parallel default(none)

ˆ~~

Let’s fix it.
Alexey Fedoseev Introduction to OpenMP December 2, 2024 34 / 38



Data sharing - default clause
#include <stdio.h>
#include <omp.h>
int main() {

int arr[1000], x = 10;
#pragma omp parallel default(none) private(x) shared(arr)
{

x = 1; arr[0] = 2;
printf("Inside x is %d and arr[0] is %d\n",

x, arr[0]);
}
printf("Outside x is %d and arr[0] is %d\n",

x, arr[0]);
return 0;

}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 35 / 38



Data sharing - default clause

$ gcc -fopenmp default-clause.c && ./a.out
Inside x is 1 and arr[0] is 2
Inside x is 1 and arr[0] is 2
Inside x is 1 and arr[0] is 2
Inside x is 1 and arr[0] is 2
Outside x is 10 and arr[0] is 2

Alexey Fedoseev Introduction to OpenMP December 2, 2024 36 / 38



Example 2: Numerical integration

0 1

2

4

4/(1 + x2)

Write a program that calculates the
integral ∫ 1

0

4
1 + x2 dx = π.

Using the left Riemann sum we
approximate the integral as follows

h
N∑

i=1

4
1 + x2

i

≈ π,

where xi = ih, h = 1/N .

Alexey Fedoseev Introduction to OpenMP December 2, 2024 37 / 38



Example 2: Using data sharing and reduction
The following code is serial. Use the knowledge of OpenMP to parallelize it with minimal
changes to the code.

#include <stdio.h>
#define N 1000000000
int main() {

double h = 1.0/N, sum = 0.0, x, pi;
for (long i = 0; i < N; i++) {

x = i*h;
sum += 4.0 / (1.0 + x*x);

}
pi = h * sum;
printf("%.12f\n", pi);
return 0;

}

Alexey Fedoseev Introduction to OpenMP December 2, 2024 38 / 38


	Introduction
	Threads
	Synchronization
	Parallel for loop
	Data sharing

