Errors

@ Taking input from a user, and then validating it, is a rather big topic on its own that we do not want
to touch.

@ Nonetheless, your code should to some extent be prepared for thing to go wrong.

o E.g., what if s=input() is suppose to give a integer, the code does int (s), but the input isn't
integer? We get some funny error like:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '45.1'

@ We will talk about Python's error messages later, but the users of your script do not wish to decipher
that.

October 2023 37/135

Ramses van Zon Introduction to Programming (SCMP142)



Error handling

@ You could check if the string is in fact a
number, as there's a function for that.

@ It would look like this:

s=input("Give me an integer: ")
if s.isnumeric():
i=int(s)
print (i)
else:
print("That is not an integer!")

@ Good, but there may be other things that go
wrong in the input that we did not catch.

@ An alternative is the ‘try first, deal with
failure later’ model: exceptions.

@ This take the following form

s=input("Give me an integer: ")
try:

i=int(s)

print (i)
except:

print("That is not an integer!")

@ You can be more specific in the except on
what kind of error you're catching, but let's
not worry about that now.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 38/135



Hands-on #4

Create a script that:

@ Read two strings, call them astr and bstr
@ Check if a number, if not error, else print the sum of astr and bstr.

Sciflet

Ramses van Zon Introduction to Programming (SCMP142) October 2023 39/135



Python’s error messages

Because we cannot foresee every possible error, let's look at a typical uncaught Python error.

>>> print 17
File "<stdin>", line 1
print 17

SyntaxError: Missing parentheses in call to 'print'

Read the lines in the error messages carefully:
@ Something's up in line 1 in a file “<stdin>", i.e., the prompt.
The statement with the issue is printed, here, it is print 17.

The ™ more precisely pinpoints where there's an issue

© © ©

The last line is most informative: there should have been
parentheses in the call to ‘print’.
The type of this error is a 'SyntaxError’.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 40/135



Python’s error messages

Let's look at another error message:

>>> print(seventeen)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'seventeen' is not defined

Read the lines in the error messages carefully:

@ \What's a traceback?

When the error occurs in the execution step, several function may be called before the error, and the
traceback would show these.

@ Here, the error occurs in line 1 in a file “<stdin>", i.e., the prompt, but before a function has been
called, i.e., on the “<module>" level.

@ Again, the last line is most informative: the variable seventeen
has not been defined (yet?).
The type of this error is a 'NameError'.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 41/135



Python’s error messages

Here's another one:

>>> a = 11
>>> b = '"17!
>>c=a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

What was going on here?

Scilet

Ramses van Zon Introduction to Programming (SCMP142) October 2023 42 /135



Section 4

Repetitions/Loops

et

Ramses van Zon Introduction to Programming (SCMP142)



Try again

In the read-an-int example, it would be nice to start over if the user didn't enter an integer.

A ‘go to beginning’ statement does not exist in Python (no 'go-to's in fact), but loops are.
Loops are repetitions of a code block for different, given cases, or until a condition is fulfilled.
So we could ‘loop’ (do the same thing over and over again) until the entered string is an integer.
This would be a while loop.

(The other kind of loop is a for, which we will see later)

Ramses van Zon Introduction to Programming (SCMP142) October 2023 44 /135



While loop

@ In the read-an-int example, it would be nice to
start over if the user didn't enter an integer.

@ We could ‘loop’ until the entered string is an
integer.

@ At the start of the while loop, haveint is checked, and Python enters the the code block that

belongs to while (the “body of the loop”)
o If i=int (s) succeeds, haveint is set to True.
@ haveint is checked at the next iteration.

@ Note that print (i) is outside the loop body.

This is one way:

haveint=False
while not haveint:
s=input("Give me an integer: ")
try:
i=int(s)
haveint=True
except:
print("That is not an integer, try again!")
print (i)

Ramses van Zon Introduction to Programming (SCMP142) October 2023

45/135



Escaping the loop

@ If the expression after while is not true after the loop body is executed, the loop stops.

@ The loop can also be stopped at any time in the loop body with the break keyword.

In both cases, execution of the script continues with the next non-indented line of code.

So instead of:

We could also have used:

haveint=False
while not haveint:

s=input("Give me an integer: ")

try:

i=int(s)

haveint=True

except:

print("That is not an integer, try again!")
print (i)

while True:

s=input("Give me an integer: ")

try:

i=int(s)

break

except:

print("That is not an integer, try again!")
print (i)

Note: break stops the loop, but not the script. The exit () function can stop a script.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 46 /135



Hands-on #5

Create a script that:
@ Reads two strings, call them astr and bstr

@ Checks if they are numbers, if not, let user know which one is wrong, and let them enter both
numbers again.

@ If they both contain numbers, print the sum of integer values of astr and bstr and exit.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 47 /135



