Errors

@ Taking input from a user, and then validating it, is a rather big topic on its own that we do not want
to touch.

@ Nonetheless, your code should to some extent be prepared for thing to go wrong.

o E.g., what if s=input() is suppose to give a integer, the code does int (s), but the input isn't
integer? We get some funny error like:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '45.1'

@ We will talk about Python's error messages later, but the users of your script do not wish to decipher
that.
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Error handling

@ You could check if the string is in fact a
number, as there's a function for that.

@ It would look like this:

s=input("Give me an integer: ")
if s.isnumeric():
i=int(s)
print (i)
else:
print("That is not an integer!")

@ Good, but there may be other things that go
wrong in the input that we did not catch.

@ An alternative is the ‘try first, deal with
failure later’ model: exceptions.

@ This take the following form

s=input("Give me an integer: ")
try:

i=int(s)

print (i)
except:

print("That is not an integer!")

@ You can be more specific in the except on
what kind of error you're catching, but let's
not worry about that now.
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Hands-on #4

Create a script that:

@ Read two strings, call them astr and bstr
@ Check if a number, if not error, else print the sum of astr and bstr.

Sciflet
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Python’s error messages

Because we cannot foresee every possible error, let's look at a typical uncaught Python error.

>>> print 17
File "<stdin>", line 1
print 17

SyntaxError: Missing parentheses in call to 'print'

Read the lines in the error messages carefully:
@ Something's up in line 1 in a file “<stdin>", i.e., the prompt.
The statement with the issue is printed, here, it is print 17.

The ™ more precisely pinpoints where there's an issue

© © ©

The last line is most informative: there should have been
parentheses in the call to ‘print’.
The type of this error is a 'SyntaxError’.
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Python’s error messages

Let's look at another error message:

>>> print(seventeen)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'seventeen' is not defined

Read the lines in the error messages carefully:

@ \What's a traceback?

When the error occurs in the execution step, several function may be called before the error, and the
traceback would show these.

@ Here, the error occurs in line 1 in a file “<stdin>", i.e., the prompt, but before a function has been
called, i.e., on the “<module>" level.

@ Again, the last line is most informative: the variable seventeen
has not been defined (yet?).
The type of this error is a 'NameError'.
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Python’s error messages

Here's another one:

>>> a = 11
>>> b = '"17!
>>c=a+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

What was going on here?

Scilet
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Section 4

Repetitions/Loops

et
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Try again

In the read-an-int example, it would be nice to start over if the user didn't enter an integer.

A ‘go to beginning’ statement does not exist in Python (no 'go-to's in fact), but loops are.
Loops are repetitions of a code block for different, given cases, or until a condition is fulfilled.
So we could ‘loop’ (do the same thing over and over again) until the entered string is an integer.
This would be a while loop.

(The other kind of loop is a for, which we will see later)
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While loop

@ In the read-an-int example, it would be nice to
start over if the user didn't enter an integer.

@ We could ‘loop’ until the entered string is an
integer.

@ At the start of the while loop, haveint is checked, and Python enters the the code block that

belongs to while (the “body of the loop”)
o If i=int (s) succeeds, haveint is set to True.
@ haveint is checked at the next iteration.

@ Note that print (i) is outside the loop body.

This is one way:

haveint=False
while not haveint:
s=input("Give me an integer: ")
try:
i=int(s)
haveint=True
except:
print("That is not an integer, try again!")
print (i)
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Escaping the loop

@ If the expression after while is not true after the loop body is executed, the loop stops.

@ The loop can also be stopped at any time in the loop body with the break keyword.

In both cases, execution of the script continues with the next non-indented line of code.

So instead of:

We could also have used:

haveint=False
while not haveint:

s=input("Give me an integer: ")

try:

i=int(s)

haveint=True

except:

print("That is not an integer, try again!")
print (i)

while True:

s=input("Give me an integer: ")

try:

i=int(s)

break

except:

print("That is not an integer, try again!")
print (i)

Note: break stops the loop, but not the script. The exit () function can stop a script.
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Hands-on #5

Create a script that:
@ Reads two strings, call them astr and bstr

@ Checks if they are numbers, if not, let user know which one is wrong, and let them enter both
numbers again.

@ If they both contain numbers, print the sum of integer values of astr and bstr and exit.
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