
High-Performance Computing in R
Introduction to Computational BioStatistics with R

Alexey Fedoseev

November 28, 2024

Alexey Fedoseev High-Performance Computing in R November 28, 2024 1 / 25

High-performance R

Just a reminder:

R is an interpreted language. As such, there is an extra layer of infrastructure (the
interpreter) needed to make R run

As a general rule, because of the extra layer of infrastructure, interpreted languages (R,
Python, Bash, Perl, . . .) are not high-performance languages

True high-performance languages are compiled, and thus they lack the extra layer of
infrastructure: C, C++, Fortran

That being said, there are ways of making R better. That is the goal of this class

Alexey Fedoseev High-Performance Computing in R November 28, 2024 2 / 25

R and memory

One must be cognisant of how R manages memory:

R is “pass by value” if the variables being passed are being modified within the function.
As such, R frequently needs to make temporary copies of variables, and hitting the memory
limit of your machine can be a frequent problem

Like many dynamic languages, R relies on “garbage collection” to limit its memory usage

In a running code, ”every so often” a garbage collection task runs and deletes variables that
won’t be used any more

You can force the garbage collector to run at any given time by calling gc(), but this
almost never fixes anything significant

How can GC know that you’re not going to use that big variable in the next line? The
garbage collector needs your help to be effective

Alexey Fedoseev High-Performance Computing in R November 28, 2024 3 / 25

Useful memory-management commands
gc(verbose = TRUE), or just gc(TRUE)

▶ Calling gc(TRUE) alone probably won’t help anything, but it does give verbose output,
returning memory usage as a matrix

ls()

▶ Lists all existing variables, as strings

object.size(variablename)

▶ Pass it a variable, and it prints out its size
▶ Pass it get(“variablename”) and it will also print its size

rm(variablename)

▶ Deletes a variable you no longer need. Lets gc go to work

Fun little one-liner which prints out all variables by size in bytes
> sort(sapply(ls(), function(x) {object.size(get(x))}), decreasing = TRUE)

Alexey Fedoseev High-Performance Computing in R November 28, 2024 4 / 25

object.size and gc
> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 183250 9.8 407500 21.8 350000 18.7
Vcells 377223 2.9 905753 7.0 864975 6.6
> get.mem <- function() return(gc()[, 1:2])
> old.mem <- get.mem()
> x <- rep(0., (16 * 1024)**2)
> xsize <- object.size(x)
> xsize
2147483688 bytes
> print(xsize, units = "MB")
2048 Mb
> get.mem() - old.mem

used (Mb)
Ncells 445 0
Vcells 268436139 2048

Alexey Fedoseev High-Performance Computing in R November 28, 2024 5 / 25

object.size and gc, some more

Now let’s delete the object and see how the system memory behaves
> rm(x)
> final.mem <- get.mem()
> final.mem - old.mem

used (Mb)
Ncells 451 0.1
Vcells 1781 0.0

Be sure to delete temporary variables in your scripts, especially large ones!

Alexey Fedoseev High-Performance Computing in R November 28, 2024 6 / 25

Profiling

To push your code to new heights of awesome, or to make it useful at all (depending on your
situation), you will need to profile your code. What is profiling?

Profiling is analyzing where the code is spending its time. Which parts of the code are
slowest?

Testing how long individual functions take can be performed with the ‘microbenchmark’
package, or more crudely, system.time

To test the whole program we use the ‘Rprof’ package

We’ll do some examples of each.

Alexey Fedoseev High-Performance Computing in R November 28, 2024 7 / 25

Profiling individual functions

The system.time command uses the OS’s time command to determine how long the
code takes to run.

> f <- function() {
+ a <- 1
+ for (i in 1:1e8) {
+ a <- a + i
+ }
+ }
> system.time(f())

user system elapsed
0.964 0.002 0.967

Alexey Fedoseev High-Performance Computing in R November 28, 2024 8 / 25

Profiling individual functions - microbenchmark

The microbenchmark function is more systematic. It takes an average over 100 calls of
the function. Consequently, it can take a while to run

Note that the microbenchmark package will need to be downloaded
> microbenchmark(f(), times=10)
Unit: milliseconds
expr min lq mean median uq max neval
f() 927.771 929.782 939.4129 940.1643 943.3133 952.1787 10

Alexey Fedoseev High-Performance Computing in R November 28, 2024 9 / 25

Profiling individual functions - microbenchmark

You can use microbenchmark to compare performance of multiple functions:
x = runif(100)
microbenchmark(

sqrt(x),
x ˆ 0.5

)

Unit: nanoseconds
expr min lq mean median uq max neval

sqrt(x) 287 328 604.34 369 430.5 10742 100
xˆ0.5 1968 2009 2106.17 2050 2091.0 5248 100

Alexey Fedoseev High-Performance Computing in R November 28, 2024 10 / 25

Profiling whole programs
Use Rprof to analyse where the code is spending its time.
> addme <- function(a, b) { Sys.sleep(0.001); return(a + b) }
> test <- function() {
+ a <- 1
+ for (i in 1:1e5)
+ a <- addme(a, i)
+ }
> Rprof("Rprof.data")
> test()
> Rprof(NULL)
> s <- summaryRprof("Rprof.data")
> s$by.total

total.time total.pct self.time self.pct
"test" 1.82 100.0 0.00 0.0
"Sys.sleep" 1.80 98.9 1.80 98.9
"addme" 1.80 98.9 0.00 0.0

Alexey Fedoseev High-Performance Computing in R November 28, 2024 11 / 25

Rprof
Some notes about the last slide:

Rprof samples the program every 20ms, by default, to see where the program is spending
its time

Use Rprof("filename") to store the Rprof results in a particular file

Use Rprof(NULL) to turn off profiling

You can read “filename” if you want. It’s easier to just use summaryRprof("filename")
to analyse the results

Results are given in data frames

Columns total.time and total.pct (total percent) include all time spent within a
function, including calls to other functions

self.time and self.pct indicate actually real time spent in each function (self.pct
should add up to 100%, give or take rounding).

Alexey Fedoseev High-Performance Computing in R November 28, 2024 12 / 25

foreach and doparallel

The “master/worker” approach that parallel enables works extremely well for moderately
sized problems, and isn’t that difficult to use. It is all based on one form of R iteration, apply,
which is well understood.

However, going from serial to parallel requires some re-writing, and even going from one method
of parallelism to another (eg, multicore-style to snow-style) requires some modification of
code.

The foreach package is based on another style of iterating through data - a for loop - and is
designed so that one can go from serial to several forms of parallel relatively easily. There are
then a number of tools one can use in the library to improve performance.

Alexey Fedoseev High-Performance Computing in R November 28, 2024 13 / 25

foreach - serial

The standard R for loop looks like this:
> for (i in 1:2) print(sqrt(i))
[1] 1
[1] 1.414214

The foreach operator looks similar, but returns a list of the iterations:
> library(foreach)
> foreach (i=1:2) %do% sqrt(i)
[[1]]
[1] 1

[[2]]
[1] 1.414214

Alexey Fedoseev High-Performance Computing in R November 28, 2024 14 / 25

foreach + doParallel
Foreach works with a variety of backends to distribute computation - doParallel, which allows
snow- and multicore-style parallelism, and doMPI (not covered here).

Switching the above loop to parallel just requires registering a backend and using %dopar%
rather than %do%:
> library(doParallel)
> registerDoParallel(3) # use multicore-style forking
> foreach (i=1:2) %dopar% sqrt(i)
[[1]]
[1] 1

[[2]]
[1] 1.414214

> stopImplicitCluster()

Alexey Fedoseev High-Performance Computing in R November 28, 2024 15 / 25

foreach + doParallel
One can also use a PSOCK cluster:
> cl <- makePSOCKcluster(3)
> registerDoParallel(cl) # use the just-made PSOCK cluster
> foreach (i=1:3) %dopar% sqrt(i)
[[1]]
[1] 1

[[2]]
[1] 1.414214

[[3]]
[1] 1.732051

> stopCluster(cl)

Alexey Fedoseev High-Performance Computing in R November 28, 2024 16 / 25

Combining results
While returning a list is the default, foreach has a number of ways to combine the individual
results:
> foreach (i=1:3, .combine=c) %do% sqrt(i)
[1] 1.000000 1.414214 1.732051
> foreach (i=1:3, .combine=cbind) %do% sqrt(i)

result.1 result.2 result.3
[1,] 1 1.414214 1.732051
> foreach (i=1:3, .combine="+") %do% sqrt(i)
[1] 4.146264
> foreach (i=1:3, .multicombine=TRUE, .combine="sum") %do% sqrt(i)
[1] 4.146264

Most of these are self explanatory. multicombine is worth mentioning: by default, foreach
will combine each new item individually. If .multicombine=TRUE, then you are saying that
you’re passing a function which will do the right thing even if foreach gives it a whole wack of
new results as a list or vector - e.g., a whole chunk at a time.

Alexey Fedoseev High-Performance Computing in R November 28, 2024 17 / 25

Summary: foreach

Foreach is a wrapper for the other parallel methods we’ve seen, so it inherits some of the
advantages and drawbacks of each.

Use foreach if: - Your code already relies on for-style iteration; transition is easy

You don’t know if you want multicore vs. snow style parallel use: you can switch just by
registering a different backend!

You want to be able to incrementally improve the performance of your code.

Note that you can have portions of your analysis code use foreach with parallel and portions
using the backend with apply-style parallelism; it doesn’t have to be all one or the other.

Alexey Fedoseev High-Performance Computing in R November 28, 2024 18 / 25

Compiled code

It is possible to interface your R code with compiled code. Why would you want to do that?

It’s fast! Compiled code is always faster than interpreted code

If you can get the slowest parts of your code into a compiled language, you can leave the
rest in R

R comes with the ability to byte-compile specific functions

It’s also possible to write your own pure C++ or Fortran code to interface with R, but it’s
a pain

It’s easier to use the Rcpp package, written by Dirk Eddelbuettel, Romain Francois, and
others

This package allows you to easily interface with C++ code

Alexey Fedoseev High-Performance Computing in R November 28, 2024 19 / 25

Byte-compiled R code
We can byte-compile specific R functions using the compiler package. Since R 3.4.0, loops are
automatically byte-compiled before they are run, and all functions are compiled on their first or
second use.

Here we’re using the enableJIT (Just In Time compiler) function to turn off automatic byte
compiling. In general, you should NOT do this. We’re only doing this for the purposes of
comparing speeds.
> library(compiler); library(microbenchmark)
> oldJIT <- enableJIT(0); n <- 1e5
> f <- function(n) { x <- 1; for (i in 1:n) x <- 1 / (1 + x) }
> lf <- cmpfun(f)
> microbenchmark(f(n), lf(n))
Unit: milliseconds

expr min lq mean median uq max neval
f(n) 13.439841 13.778255 14.309054 13.860767 14.38052 27.337693 100

lf(n) 1.359232 1.362942 1.372936 1.364152 1.37596 1.526307 100
Alexey Fedoseev High-Performance Computing in R November 28, 2024 20 / 25

Byte-compiled R code

Some notes about the last slide:

Byte compiling is not the same as actually compiling code, as is done with compiled
languages:

▶ Byte compiling creates a byte object, which is executed by a virtual machine
▶ Compiled languages are compiled into machine code, which is directly used by the hardware

Nonetheless, byte compiling can be significantly faster than running the code through the R
interpreter

If you run a function multiple times, R will automatically byte-compile it for you. Better to
just byte-compile it in your utilities file.

Automatic byte compiling can be turned off using the enableJIT function, though this is
not recommended

Alexey Fedoseev High-Performance Computing in R November 28, 2024 21 / 25

Installing Rcpp

We’re going to be doing examples with Rcpp. But, if you’re using Windows. . .

Rcpp is not a default R package; you will need to download and install it

Because Rcpp compiles code (that’s the point), you will need a compiler on your computer

If you’re using Linux or a Mac, you’re probably OK

On Windows, you need to go here, and download “Rtools”:

https://cran.r-project.org/bin/windows/Rtools

Note that Rtools is quite large, and will require some time to download. It’s probably best not
to do this during class.

Alexey Fedoseev High-Performance Computing in R November 28, 2024 22 / 25

https://cran.r-project.org/bin/windows/Rtools

Using Rcpp

Once the function is defined, it will automatically be compiled, this is why it takes a moment for
the cppFunction command to finish.

Once compiled, Rcpp creates an R function which links to the compiled C++ code.
> library(Rcpp)
> cppFunction("int times(int x, int y) {
+ int product = x * y;
+ return product;
+ }")
> times(34, 4)
[1] 136
> 34 * 4
[1] 136

Alexey Fedoseev High-Performance Computing in R November 28, 2024 23 / 25

Using Rcpp

Some notes about this example:

Rcpp defines special C++ data types which are compatible with R data types:
▶ IntegerVector, NumericVector, LogicalVector, CharacterVector
▶ IntegerMatrix, NumericMatrix, LogicalMatrix, CharacterMatrix
▶ Lists, DataFrames

These data types allow the ability to deal with missing values, using the is_na() function

Note that you should always test your code carefully when using multiple languages. Sometimes
surprises can creep in.

Alexey Fedoseev High-Performance Computing in R November 28, 2024 24 / 25

Making your code awesome

Some tips:

Save your function profiling until you know that the function works correctly. Don’t
succumb to “premature optimization”

Do byte compiling first. It’s easy and may be good enough

Put your byte-compiled functions in your utilities files

Don’t be afraid of Rcpp. Once you know how to program in one language, you’re at least
80% of the way to programming in all languages

Ask us for help, if speed becomes an issue for your productivity

Alexey Fedoseev High-Performance Computing in R November 28, 2024 25 / 25

	High-performance R
	foreach and doparallel

