
Parallel Computing in R
Introduction to Computational BioStatistics with R

Alexey Fedoseev

November 26, 2024

Alexey Fedoseev Parallel Computing in R November 26, 2024 1 / 25

Concurrency vs Parallelism

Figure 1: Concurrent, non-parallel execution

Figure 2: Concurrent, parallel execution

Alexey Fedoseev Parallel Computing in R November 26, 2024 2 / 25

Using multiple processors in R

In this class we will cover using multiple processors and/or nodes to do large-scale computations
in R.

existing parallelism

parallel package:
▶ multicore (use all cores on a computer): non-windows
▶ snow (use all cores on a computer, or across a cluster)

Alexey Fedoseev Parallel Computing in R November 26, 2024 3 / 25

Existing parallelism

It’s important to realize that many fundamental routines as well as higher-level packages come
with some degree of scalability and parallelism “baked in”.

Open another terminal to your node, and run “top” while executing the following in R:
>
> n <- 4 * 1024
>
> A <- matrix(rnorm(n * n), ncol = n, nrow = n)
> B <- matrix(rnorm(n * n), ncol = n, nrow = n)
>
> C <- A %*% B
>

Alexey Fedoseev Parallel Computing in R November 26, 2024 4 / 25

Existing parallelism

One R process using 778% of a processor.

R can (and should) be built using high-performance threaded libraries for math in general, and
linear algebra in particular.

Here the single R process has launched several threads of execution – all of which are part of the
same process, and so can see the same memory.

Alexey Fedoseev Parallel Computing in R November 26, 2024 5 / 25

Packages that explicitly use parallelism

For a complete list, see

http://cran.r-project.org/web/views/HighPerformanceComputing.html

Plus packages that use linear algebra or other expensive math operations which can be implicitly
multithreaded.

When at all possible, don’t do the hard work yourself — look to see if a package already exists
which will do your analysis at scale.

Alexey Fedoseev Parallel Computing in R November 26, 2024 6 / 25

http://cran.r-project.org/web/views/HighPerformanceComputing.html

Processes vs Threads vs CPUs vs Cores
A process is a running program. It has
data, the program code, and one or more
threads of execution - points in the code
that is currently being run.
A thread can see all of the data (and all
other threads) within a process; you can’t
see anything outside of your own user
process.
The operating system assigns running
threads to cores (or CPUs, or processors,
which are the same thing and I’ll use the
terms interchangably.)
“Core” is the least ambiguous term — an
independent processing unit.

Alexey Fedoseev Parallel Computing in R November 26, 2024 7 / 25

The parallel Package

Since R 2.14.0 (late 2011), the parallel package has been part of core R. It incorporates - and
mostly supersedes - two other packages:

multicore: for using all cores on a single processor. Not on Windows

snow: for using any group of processors, possibly across a cluster

Many packages which use parallelism use one of these two, so it is worth understanding.

Both create new processes (not threads) to run on different processors; but differ in important
ways.

Alexey Fedoseev Parallel Computing in R November 26, 2024 8 / 25

multicore - forking

multicore creates new processes by
forking — cloning – the original process.
That means the new processes start off
seeing a copy of exactly the same data as
the original. If a first process can read a
file, and it then forks two new processes -
each will see a copy of the file.
These are not shared memory; changes in
one process will not be reflected in others.
Windows doesn’t have fork(), so windows
can’t use these routines.

Alexey Fedoseev Parallel Computing in R November 26, 2024 9 / 25

snow - Spawning

snow creates entirely new R processes to
run the jobs.
A downside is that you need to explicitly
copy over any needed data, functions.
But the upsides are that spawning a new
process can be done on a remote machine,
not just current machine. So you can in
principle use entire clusters.
In addition, the flipside of the downside:
new processes don’t have any unneeded
data

▶ less total memory footprint.

Alexey Fedoseev Parallel Computing in R November 26, 2024 10 / 25

mcparallel/mccollect
The simplest use of the multicore package is the pair of functions mcparallel() and
mccollect(). mcparallel() forks a task to run a given function; it then runs in the
background. mccollect() waits for and gets the result.
> sleep <- function(t) {
+ Sys.sleep(t) # time in seconds
+ return(t)
+ }
> system.time(sleep(10))

user system elapsed
0.000 0.000 10.005

>
> par.sleep <- function() {
+ sleep20 <- mcparallel(sleep(20))
+ sleep30 <- mcparallel(sleep(30))
+ return(mccollect(list(sleep20, sleep30)))
+ }

Alexey Fedoseev Parallel Computing in R November 26, 2024 11 / 25

mcparallel/mccollect

> system.time(ans <- par.sleep())
user system elapsed

0.005 0.006 30.009
> ans
$`58550`
[1] 20

$`58551`
[1] 30

We get a list of answers, with each element “named” by the process ID that ran the job.

Alexey Fedoseev Parallel Computing in R November 26, 2024 12 / 25

mcparallel/mccollect

When parallelizing your code, make sure you have enough work for all your processes.

Let us say we have a serial and a parallel version of the same code:
> mean.rnd <- function(nmax = 1e7) {
+ fst.mean <- mean(rnorm(nmax))
+ snd.mean <- mean(rnorm(nmax))
+ return(list(fst.mean, snd.mean))
+ }
>
> par.mean.rnd <- function(nmax = 1e7) {
+ fst.mean <- mcparallel(mean(rnorm(nmax)))
+ snd.mean <- mcparallel(mean(rnorm(nmax)))
+ return(mccollect(list(fst.mean, snd.mean)))
+ }

Alexey Fedoseev Parallel Computing in R November 26, 2024 13 / 25

mcparallel/mccollect

If we run these function, but there is not enough work for each process, the parallel version end
up running longer than our serial code:
> system.time(mean.rnd(1e4))

user system elapsed
0.001 0.000 0.001

>
> system.time(par.mean.rnd(1e4))

user system elapsed
0.002 0.004 0.005

Forking the processes and waiting for them to rejoin takes some time. This overhead means that
we want to launch jobs that take a significant length of time to run - much longer than the
overhead (hundredths to tenths of seconds for fork()).

Alexey Fedoseev Parallel Computing in R November 26, 2024 14 / 25

mclapply

Another way to fork code is to use mclapply, which works the same way as lapply, but
forking off the processes (as with mcparallel):
> add.me <- function(n) {
+ a <- 1
+ for (i in 1:n) a <- 1 / (1 + a)
+ }
> system.time(list.res <- lapply(rep(1e8,4), add.me))

user system elapsed
5.532 0.007 5.539

> system.time(list.par.res <- mclapply(rep(1e8,4), add.me, mc.cores = 4))
user system elapsed

4.495 0.013 1.516

Alexey Fedoseev Parallel Computing in R November 26, 2024 15 / 25

mclapply
Note what the output of top looks like when this is running:

There are multiple processes running - not one process using multiple CPUs via threads.
Alexey Fedoseev Parallel Computing in R November 26, 2024 16 / 25

Parallel RNG

Depending on what you are doing, it may be very important to have different (or the same!)
random numbers generated in each process.

parallel has a good RNG suitable for parallel work based on the work of Pierre L’Ecuyer in
Montréal:
> RNGkind("L'Ecuyer-CMRG")
> mclapply(rep(1,2), rnorm, mc.cores=2, mc.set.seed=TRUE)
[[1]]
[1] -0.4982475

[[2]]
[1] 0.9267458

Alexey Fedoseev Parallel Computing in R November 26, 2024 17 / 25

pvec - simplified mclapply

For the simple and common case of applying a function to each element of a vector and
returning a vector, the parallel package has a simplified version of mclapply called pvec.
> fx <- function(x) {return(xˆ5-xˆ3+xˆ2-1)}
> maxn <- 1e7
>
> system.time(res <- sapply(1:maxn, fx))

user system elapsed
5.979 0.554 6.558

>
> system.time(res <- pvec(1:maxn, fx, mc.cores=4))

user system elapsed
0.359 0.122 0.225

Alexey Fedoseev Parallel Computing in R November 26, 2024 18 / 25

Multiple computers with parallel/snow

The snow package allows us to launch new R processes - by default, on the current computer,
but also on any computer you have access to (SNOW stands for “Simple Network of
Workstations”, which was the original use case).

The recipe for doing computations with snow looks something like:
library(parallel)
cl <- makeCluster(nworkers,...)
results1 <- clusterApply(cl, ...)
results2 <- clusterApply(cl, ...)
stopCluster(cl)

other than the makeCluster()/stopCluster(), it looks very much like multicore and
mclapply.

Alexey Fedoseev Parallel Computing in R November 26, 2024 19 / 25

Hello world
Let’s try starting up a “cluster” (eg, a set of workers) and generating some random numbers
from each:
> library(parallel)
> cl <- makeCluster(3)
> clusterCall(cl, rnorm, 5)
[[1]]
[1] 0.5341856 1.1630899 -1.4428501 2.2743744 -0.8053170

[[2]]
[1] 0.4182711 -0.6244335 1.7348715 0.8064860 -0.4366544

[[3]]
[1] -0.4195192 -0.7158211 -0.2013389 -0.7199361 0.9807875

> stopCluster(cl)

Alexey Fedoseev Parallel Computing in R November 26, 2024 20 / 25

Clustering on Clusters

Let us assume that we have several datasets, variables and functions loaded in our workspace:
> rnorm.fx <- function(n) {return(rnorm(n))}
> sum.rnorm <- function(n) {return(sum(rnorm.fx(n)))}

Recall that we aren’t forking here; we are creating processes from scratch. These processes, new
to this world, are not familiar with our workspace.
> cl <- makeCluster(3)
> clusterCall(cl, sum.rnorm, 5)
Error in checkForRemoteErrors(lapply(cl, recvResult)) :

3 nodes produced errors; first error: could not find function "rnorm.fx"

Alexey Fedoseev Parallel Computing in R November 26, 2024 21 / 25

Clustering on Clusters
We actually have to ship the data out to the workers:
> clusterExport(cl, "rnorm.fx")
> clusterCall(cl, sum.rnorm, 5)
[[1]]
[1] 0.6790298

[[2]]
[1] -5.254114

[[3]]
[1] -0.09843904

> stopCluster(cl)

Note that the costs of shipping out data back and forth, and creating the processes from scratch,
is relatively costly - but this is the price we pay for being able to spawn the processes anywhere.

Alexey Fedoseev Parallel Computing in R November 26, 2024 22 / 25

Running across machines

You can run your code on multiple machines by specifying them to the function
makePSOCKcluster:
hosts <- c(rep("localhost", 4))
cl <- makePSOCKcluster(names=hosts)
clusterCall(cl, rnorm, 5)
clusterCall(cl, system, "hostname")
stopCluster(cl)

Alexey Fedoseev Parallel Computing in R November 26, 2024 23 / 25

clusterApply

clusterApply takes a cluster, a sequence of arguments (can be a vector or a list), and a
function, and calls the function with the first element of the list on the first node, with the
second element of the list on the second node, and so on, recycling nodes as needed.
> clusterApply(cl, 1:2, sum, 3)
[[1]]
[1] 4

[[2]]
[1] 5

Alexey Fedoseev Parallel Computing in R November 26, 2024 24 / 25

Summary: parallel/snow

The cluster routines in parallel are good if you know you will eventually have to move to
using multiple computers (nodes in a cluster, or desktops in a lab) for a single computation.

Use clusterExport for functions and data that will be needed by everyone

Communicating data is slow, but much faster than having every worker read the same data
from a file

Use clusterApplyLB if the tasks vary greatly in runtime

Use clusterApply if each task requires an enormous amount of data

Use makePSOCKcluster for clusters

Alexey Fedoseev Parallel Computing in R November 26, 2024 25 / 25

	Multiple computers with parallel/snow

