
File Input and Output
Introduction to Computational BioStatistics with R

Alexey Fedoseev

November 21, 2024

Alexey Fedoseev File Input and Output November 21, 2024 1 / 22



Basic File Input and Output in R
There are number of ways you can view files on your computer:

Alexey Fedoseev File Input and Output November 21, 2024 2 / 22



Directory management

You can use commands directly in R to
view and manipulate your files and
directories. For example:

use getwd() to check where you are
use dir() or list.files() to view
files in the current directory
use setwd('scripts') to change
the directory
use dir.create('mydir') to create
a directory
use dir.exists('mydir') to check
whether the directory exists (returns
TRUE or FALSE)

> dir()
[1] "data" "program" "README.txt"
> dir.exists("data")
[1] TRUE
> if (dir.exists("data")) {
+ setwd("data")
+ } else {
+ dir.create("data")
+ }

Alexey Fedoseev File Input and Output November 21, 2024 3 / 22



File management

File management commands:
file.exists("filename")
normalizePath("filename")
dirname("filename")

> dir()
[1] "data" "program" "README.txt"
> file.exists("README.txt")
[1] TRUE
> normalizePath("README.txt")
[1] "/Users/alexey/project/README.txt"

Alexey Fedoseev File Input and Output November 21, 2024 4 / 22



Writing to a file
file(filename, 'w') opens the file
for writing. Use ‘r’ to read and ‘a’ to
append
writeLines writes lines to the file,
depending on how the file was opened
write opens, writes and closes the file in
one shot
cat writes to a file, but it doesn’t
automatically add newlines
This technique is useful if you need to
save some meta-data from an analysis
If you are writing something in a loop,
open a file once before the loops starts,
use the loop to write data to the file,
close the file after the loop

> myfile <- file("output.txt", "w")
> writeLines("Hello", myfile)
> writeLines("World", myfile)
> close(myfile)
>
> write(file = "output.txt", "Hello")
>
> write(file = "output.txt", "World",
+ append = T)
>
> cat("Hello\n", file = "output.txt",
+ append = T)

Alexey Fedoseev File Input and Output November 21, 2024 5 / 22



Writing a data frame to a file

You can save a whole data frame to a text file:

Not generally recommended, especially if it’s large

It’s better to save it as a binary file, using one of the techniques we’ll cover later

There is a whole family of functions: write.csv and write.table in particular

Using row.names = F tells R to not include the row indices in the file, which you generally
don’t want

If your data has actual row names though, you will probably want to keep them.
> mydata <- trees
> write.csv(mydata, file = "mydata.csv", row.names = F)

Alexey Fedoseev File Input and Output November 21, 2024 6 / 22



Using readLines
How to read from a text file:

readLines by default reads the entire contents of the file

Use the n = 1 option to read just one line at a time.

readLines will start at the beginning of the file

You can also use read.csv, read.delim, read.table, etc.
> myfile <- file("output.txt", "r")
> file.content <- readLines(myfile)
> str(file.content)
chr [1:3] "Hello" "World" "Hello2"

> fst.line <- readLines(myfile, n = 1)
> fst.line
[1] "Hello"
> close(myfile)

Alexey Fedoseev File Input and Output November 21, 2024 7 / 22



Using file wildcards

The glob2rx function takes a Unix-style wildcard expression and converts it to a regular
expression pattern.

This is useful for finding files.
> dir(pattern = glob2rx("*.txt"))
[1] "output.txt" "README.txt"

Alexey Fedoseev File Input and Output November 21, 2024 8 / 22



Minimizing IOPs

It is important that you minimize file input and output operations as much as possible.

Common mistake is to open and close file in a loop when it is not necessary. Doing this will slow
down your program a lot!

When reading data from a file, make sure to open file once, read/write the data in the file at
once or in a loop if required, and finally close the file.
> mydata <- "Hello world"
>
> myfile <- file("hiworld.txt", "w")
> cat(mydata, file = myfile)
> close(myfile)
>
> cat("\n", file = "hiworld.txt", append = T)

Alexey Fedoseev File Input and Output November 21, 2024 9 / 22



Tips for IOPs

Disk I/O is almost always the slowest part of a data pipeline

If manipulating data from files is most of what you do, try to minimize IOPs (Input/Output
Operations per second)

Tips for making things better: - Load everything into memory once

Reuse data, don’t keep re-reading it from your files

If you must keep writing temporary things to disk, use ramdisk (memory as disk)

Keep your results in memory, and then write your results in one shot when you are finished

Use binary files

Alexey Fedoseev File Input and Output November 21, 2024 10 / 22



What’s in a file?

Files come in different formats. For our purposes there are two basic types:

Text:

On its face this seems attractive: you can just read it

But this is not as trivial as it may sound

A bit pattern must be assigned to each letter or symbol (encoding)

Binary:

This corresponds to saving data the way the machine keeps the data in memory: fast and
efficient

Good binary formats include information about the data within the file, e.g.: HDF5,
NetCDF.

Alexey Fedoseev File Input and Output November 21, 2024 11 / 22



Text format

An introduction to text:
ASCII Encoding: 7 bits = 1 character
128 possible, but only 95 printable
characters
Uses 8-bit bytes: storage efficiency 82% at
best
ASCII representation of floating point
numbers:

▶ Needs about 18 bytes vs 8 bytes in binary:
inefficient

▶ Representation must be computed: slow
▶ Non-exact representation.

ASCII

Integers Characters

32 (space)
33-47 !“#$%&’()*+,-./
48-57 0-9
58-64 :;<=>?
65-90 A-Z
91-96 [\]ˆ_
97-122 a-z
123-126 {|}~

Alexey Fedoseev File Input and Output November 21, 2024 12 / 22



Text Encodings
There are a variety of text encoding available:

ASCII: 7-bit encoding. For English.

Latin-1: 8-bit encoding. For western European Languages mostly

UTF-8: Variable-width encoding that can represent every character in the Unicode
character set.

Unicode: standard containing more than 110,000 characters.

R can deal with these encodings:

Use the Encoding function to set the encoding of a string

Use the iconv function to convert between encodings.

Use the unicode escape character \U to indicate to R that the following is a Unicode
character.

Alexey Fedoseev File Input and Output November 21, 2024 13 / 22



Text Encodings
> x <- "fa\xe7ile"
> Encoding(x)
[1] "unknown"
> Encoding(x) <- "latin1"
> x
[1] "façile"
> xx <- iconv(x, "latin1", "UTF-8")
> Encoding(xx)
[1] "UTF-8"
> x
[1] "façile"
> a <- "\U00B5"
> a
[1] "µ"

Alexey Fedoseev File Input and Output November 21, 2024 14 / 22



Binary format

Binary is a different way of storing information.

The data are output to storage in the same format in which they are stored in memory

Fast and space-efficient, especially numbers

Writing 128M doubles

SciNet file system ramdisk

ASCII 173 s 174 s
binary 6 s 1 s

Not human readable

Alexey Fedoseev File Input and Output November 21, 2024 15 / 22



Why you should not use raw binary data

Data which is dumped to disk without any added formatting is called ‘raw’. Such a dump of the
memory is very fast, but you lose the information describing the data. For example:

Suppose you dump a 2D array of 100x100 floating point numbers

This gives you a file of 40,000 bytes

If you give this to someone else, how will he know what it is? It could be almost anything:
▶ a 2D array of 100x100 numbers
▶ a 1D array of 10,000 floating point numbers
▶ a string of 40,000 characters
▶ etc.

Obviously we need some metadata to go with the actual information we are trying to save.

Alexey Fedoseev File Input and Output November 21, 2024 16 / 22



Binary Formats

You could invent your own binary format, but it’s better to take an existing standard: this saves
you potential bugs, the burden of documentation and/or maintaining an I/O library.

Rdata: An R-specific format. Cannot be read by other languages

RDS: Another R-specific format. Stores a single R object only

HDF5: Another standard, self-describing format. Almost a file system in a file. Several
bio-informatics packages use this as a back-end

Bioinformatics, genetics, and other bio-type fields all have their own formats.

Alexey Fedoseev File Input and Output November 21, 2024 17 / 22



The Rdata type

The simplest way to save and retrieve data:

You can save variables using the save function

To load saved data, use load

Note that your loaded data will overwrite any existing variables of the same name
> var1 <- 10; var2 <- "hello"
> save(var1, var2, file = "mydata.Rdata")

Now exit and re-launch the R prompt:
> load("mydata.Rdata")
> print(var1); print(var2)
[1] 10
[1] "hello"

Alexey Fedoseev File Input and Output November 21, 2024 18 / 22



RDS files

RDS is similar to the Rdata file format, with some exceptions:

only a single object can be saved

the object is serialized during the saving

when loaded, the object is directly assigned to a variable, instead of relying on the variable
name that it had previously

load() can overwrite objects, silently; readRDS() cannot.
> a <- 1:10
> saveRDS(a, file = "mydata.RDS")
> b <- readRDS("mydata.RDS")
> b
[1] 1 2 3 4 5 6 7 8 9 10

Alexey Fedoseev File Input and Output November 21, 2024 19 / 22



On the use of meta-data

What is meta-data? Simply put: data-about-the-data

The best binary formats have the meta-data baked right into the data file

This way the meta-data and the data are never separated; the meta-data is always available.

Always, always, include the meta-data with the data itself

If you don’t keep your meta-data in the same file as the data, at least keep it in the same
directory

Why? You need to know where did it come from. Under what conditions? Can you trust it?

Alexey Fedoseev File Input and Output November 21, 2024 20 / 22



On the use of meta-data

What do I include in my meta-data (data about the data)?

Include your name, as the author of the data.
Include the date and time the data was created or collected.
Include the name of the code, and the version number of the code, which was used to
create it.
Include where it was created, what operating system.
Include the values of key variables that were used to create the data, if your functions have
optional values.
Include anything and everything that might help you, in six months, to understand the
what/where/why/how of the data.
Include any other information that will allow you to TRUST the data.

If you’re not sure, include it!

Alexey Fedoseev File Input and Output November 21, 2024 21 / 22



Final Tips

Some tips for optimizing your IOPS:

Don’t create millions of files: it’s unworkable and slows down directories. If must have lots
of directories, bundle them into tarballs.

Stick to letters, numbers, underscores and periods in file names (no spaces!)

Minimize IOPS: write/read big chunks at a time; try to reuse data or load more into
memory.

If your data is not text, do not save it as text.

Always always save your meta-data with your data.

Alexey Fedoseev File Input and Output November 21, 2024 22 / 22


	Basic File Input and Output (I/O) in R

