
Introduction to Programming (SCMP142)

Ramses van Zon

October 2023

Ramses van Zon Introduction to Programming (SCMP142) October 2023 1 / 135



Section 1

Introduction

Ramses van Zon Introduction to Programming (SCMP142) October 2023 2 / 135



About this short course

The main point is to teach you the basics of programming!

We will be using the Python 3 programming language

Two one-hour sessions per week
Each sessions = short lecture + hands-on.

Topics

Statements, expressions, variables, functions, objects
Scripting
Input and output
Files and the file system
Modularity

Ramses van Zon Introduction to Programming (SCMP142) October 2023 3 / 135



Credit, certificates

Completing this course counts for 8 credits towards a SciNet Certificate in Scientific Computing.
(You would need 36 credits for the certificate.)

Completing this course means:
▶ Attending the sessions and taking the attendence test; and
▶ Taking and passing the online test after the last session.

Have to miss a session? Please inform us. In any case, you need to attend at least 5 sessions to get
credit.

This is not a course for UofT graduate credit.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 4 / 135



What is Programming?

We’re going to get stuff done using a computer.

But it will be stuff that is not be available in any existing application’s menus.

We will want to be able to repeat that same stuff again quickly.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 5 / 135



Required Software
Didn’t work? Here’s what you will need for the course:

A Python installation

Make sure you get Python 3 (not Python 2).
(e.g. from https://www.anaconda.com)

The command to use Python 3 may be python3
instead of python.

You could also work on SciNet:

$ ssh USERNAME@niagara.scinet.utoronto.ca
$ module load NiaEnv/2022a python/3.11.5
$ python

A text editor

You need an editor that can save in plain text format.
(e..g., nano, emacs, vi, notepad, gedit, vscode, . . . )

Working on an Apple device? Make sure you switch off “ Smart quotes ” in the settings.

A terminal or command prompt

Because running a Python program is easiest from the command line (a.k.a. “shell”).

E.g.: Bash, Mac Terminal, A-Shell, Anaconda Prompt, . . .

Ramses van Zon Introduction to Programming (SCMP142) October 2023 6 / 135

https://www.anaconda.com


What is Programming?

We’re going to get stuff done using a computer.

But it will be stuff that is not be available in any existing application’s menus.

We will want to be able to repeat that same stuff again quickly.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 7 / 135



Compute 9999 + 11111

Using a Graphical User Interface

Start up your computer.

On your computer, go to “Start”, “Applications”, “Calculator” (or your equivalent).

Note: this should open a graphical calculator.

On the keyboard, type 9999 .

Then type + .

Then type 11111 .

Then type = .

Read off the answer from the screen.

Note: Alternatively, you can select the corresponding buttons on screen with mouse clicks.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 8 / 135



Compute 9999 + 11111, again
Using the Python command line

On your computer, open a “terminal”.

This should give you some form of a terminal
prompt (or “shell prompt”).

$ will be used to denote the terminal prompt
in these slides, regardless of the form of the
terminal prompt for your system.

At the terminal prompt, type python .

This will give you a message regarding the
version of Python. (Try python3 instead if
the first number of the version is 2 or if just
python does not work).

It will also present you with a different
looking prompt, the Python prompt, either
>>> or In[1]:

After the Python prompt, type
print(9999+11111) , and press enter.

$ python
Python 3.9.12 (main, Apr 5 2022, 06:56:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" f
or more information.
>>> print(9999+11111)
21110
>>>

Ramses van Zon Introduction to Programming (SCMP142) October 2023 9 / 135



Compute 9999 + 11111, and again
A first Python application

On the same Python prompt, write

>>> f=open('app.py','w');f.write('print(9999+11111)');f.close()

This creates a file called “app.py”.

That file contains just one line:

print(9999+11111)

Because it contains Python code, it is a
Python application.

To run the program, type exit() in Python,
then type python app.py .

$ python
>>> print(9999+11111)
21110
>>> f=open('app.py','w')
>>> f.write('print(9999+11111)')
17
>>> f.close()
>>> exit()
$ python app.py
21110

Run the app again.
$ python app.py
21110

Ramses van Zon Introduction to Programming (SCMP142) October 2023 10 / 135



Automation is what it’s all about

Automating the actions performed with a GUI is next to impossible.

Once we had the text file “app.py”, automation was easy.

To create the file “app.py”, requires some extra up-front work and knowledge

(which we skipped over, and will usually do differently anyway)

Ramses van Zon Introduction to Programming (SCMP142) October 2023 11 / 135



Why No Integrated Development Environment?

Although graphical, IDEs are not ideal for learning basic Python.

The reason is that IDEs are big, with lots of configuration options and lots of functionality.

When starting to program, that just distracts from the act of coding itself.

Furthermore, every IDE is different, changes and evolves, so for instructional purposes, it is better to
stick with what works for everyone, everywhere, anytime.

But the command line is so much harder!

It is just different, so there are some things to get used to.

You may miss figuring out how to do something by looking at buttons
and menus, pointing and clicking.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 12 / 135



How to figure things out in Python

1) You can get documentation for nearly any function and package.

>>> help(print) # to get documentation about the print function

Anything after “#” on a line is ignored by Python, it’s a comment for your understanding.

Someone told me/I read online that comments are unnecessary. Don’t listen to them.
2) If you have the name of some data structure, you can ask what type it is.

>>> type(__name__) # get the type, a.k.a. the class, of __name__
<class 'str'>

3) Given some data structure, look inside it.

>>> dir(__name__) # look inside the __name__ structure

4) Or search the internet.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 13 / 135



Hands-on #1: Installation Check

Let’s make sure we all have a working Python
installation.

We will be using Python 3.

If you haven’t installed Python yet, the easiest
way to get it (currently) is probably anaconda.

Open the terminal, type python , then, after
the >>> prompt, type

print(9999+11111)

This should cause the number 21110 to be
printed on the screen.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 14 / 135



The Python Ecosystem

Although we will focus on the core Python
language, the true strength of Python is the
large body of available additional modules.

These modules provide all kinds of
functionality.

There are many modules in the standard
library that comes with Python
(“batteries included”).

E.g. modules for GUIs, databases, random
numbers, regular expressions, testing, . . .

There are even more third-party modules
available.

The official repository for third-party modules
is the Python Package Index
(https://pypi.org) with over 100,000
packages.

Most Python distributions come with the
“pip” command, with which you can install
packages from pypi.

(For Anaconda, you’d use the conda
command instead).

Ramses van Zon Introduction to Programming (SCMP142) October 2023 15 / 135

https://pypi.org


Different interfaces to Python
There are a number of ways to use Python:

1 Standard, non-interactive mode of Python

Open a terminal and type
python <SCRIPTNAME> , and the code gets

executed.
2 Standard, interactive mode of Python

Open a terminal and type python , and you
get a prompt like >>>.

You can type commands at the prompt, they
get executed, then you get another prompt.

3 IPython interactive mode

Requires IPython installation. Then type
ipython , and you get a In [1]: prompt.

Has tab completion, command history, special
commands.

4 Jupyter notebooks

Input and output cells in your browser, with
the Python back-end running possibly
remotely. Harder to convert to scripts.

https://jupyter.scinet.utoronto.ca
a. Jupyter Notebook
b. Jupyter Lab
c. VS Code jupyter emulation

Ramses van Zon Introduction to Programming (SCMP142) October 2023 16 / 135

https://jupyter.scinet.utoronto.ca


Which should I use?

Personally, I would recommend IPython for interactive work during this course.

Just keep in mind some of IPython’s special commands will not work in pure Python scripts.

IPython has a special command to save and reload your session:

In[1]: a='Hello'
In[2]: b='World'
In[3]: print(a,b)
Hello World
In[4]: %hist -f mysession.py
In[5]: %load mysession.py

The slides will nonetheless have the regular Python prompt >>>
and everything will work both in regular Python and IPython.
(In contrast to $ which stands for the terminal prompt.)

Ramses van Zon Introduction to Programming (SCMP142) October 2023 17 / 135



Section 2

What does Python really do?

Ramses van Zon Introduction to Programming (SCMP142) October 2023 18 / 135



Interpretation

What happens when we type print(9999+11111) on the Python prompt?

First, note that Python was waiting for input, and allows you to edit that input. It doesn’t ‘do’
anything until you hit enter.

(in case of IPython, you can scroll through history and use tab completion, which are not ‘doing
nothing’, but are still not doing Python)

Once you hit enter, Python will check syntax, identifying functions, keywords, arguments, special
characters, . . .

If it makes sense syntactically, it will then execute that command, i.e. translate it into (nested)
function calls that at the lowest level are in machine code that the CPU understands.

Python does this one line at a time, which puts it in the category of
interpreted languages.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 19 / 135



Example: 9999+11111

>>> print(9999+11111)

First action by Python: Syntax checking
(“Parsing”)

print is a name.

It should be a function, because it is followed
by parentheses.

The argument of the function is 9999+11111

This is two ‘literals’ (numbers), separated by
the plus sign, which is valid.

Second action by Python: Execution

Store the integer 9999.

Store the integer 11111.

Call the + operator, with those integers as
arguments.

This “returns” a new integer.

The print function is called with that new,
temporary integer as an argument.

Temporary integers are discarded.

Ramses van Zon Introduction to Programming (SCMP142) October 2023 20 / 135



Section 3

Basic elements of the Python language

Ramses van Zon Introduction to Programming (SCMP142) October 2023 21 / 135



Variables
You can give names to values in Python

>>> firstnumber = 9

We call this name-giving “assignment”.

You can reuse a name:

>>> firstnumber = 9999

The earlier value of firstnumber no longer
has that name anymore.

Effectively, firstnumber has changed value.

You can use variable instead of the value they
refer too.

>>> print(9999)
9999
>>> print(firstnumber)
9999

There are restrictions to the names: it can
have letters, numbers, underscore, but cannot
start with a number. No spaces, periods,
brackets, etc., and they cannot be one of the
reserved Python keywords:

and assert in del else raise from if
continue not pass finally while yield
is as break return elif except def
global import for or print lambda
with class try exec

Ramses van Zon Introduction to Programming (SCMP142) October 2023 22 / 135



Different types/classes of values in Python

Integer Number

>>> a = 13
>>> print(type(a))
<class 'int'>

Floating Point Numbers

>>> b = 13.5
>>> print(type(b))
<class 'float'>

Complex Numbers

>>> c = 1+5j
>>> print(type(c))
<class 'complex'>

Strings

>>> d = 'Hello, world!'
>>> print(type(d))
<class 'str'>

Bytes

>>> e = b'Hello, world!'
>>> print(type(e))
<class 'bytes'>

Boolean

>>> f = (1==2)
>>> print(f)
False
>>> print(type(f))
<class 'bool'>

Ramses van Zon Introduction to Programming (SCMP142) October 2023 23 / 135


