
Introduction to Computational BioStatistics with R:
classification I

Erik Spence

SciNet HPC Consortium

31 October 2024

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 1 / 30

Today’s slides

To find today’s slides, go to the ”Introduction to Computational BioStatistics with R” page,
under Lectures, ”Classification I”.

https://scinet.courses/1353

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 2 / 30

https://scinet.courses/1353

Today’s class

Today we will visit the following topics:

Classification algorithms, in general.

Decision trees.

kNN.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 3 / 30

Classification

Classification is similar to regression, in a sense:

You fit a model to data with known answers (y = f(x1, x2, x3, ...)).

You use the model to make predictions about new data.

But what do you do if the labels (y) are discrete? How do you deal with that?

Data point y is either in category 1 or 2.

You don’t get points for putting y in category 1.5.

Classification algorithms are used to create models for separating data into known categories.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 4 / 30

Classification problems
Some classic classification problems:

Bioinformatics - classifying proteins according to function.

Medical diagnosis.

Image processing:
▶ what objects exist in an image?
▶ hand-written text analysis.

Text categorization:
▶ Spam filtering
▶ Sentiment analysis: is this tweet positive or negative?

Language recognition.

Fraud detection.

Input variables can be continuous, discrete, or both.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 5 / 30

Classification approaches

There are lots of classification approaches which one might use.

Decision trees: analyze the features of the data and make ’decisions’ about how to ’split’
the data into uniform groups.

Logistic regression: like linear regression, but now we fit a ”yes/no” function to the data.

Naive Bayes: a type of probabilistic analysis.

kNN: k Nearest Neighbours; use the k nearest neighbours to a data point to predict the
category of a new data point.

Support Vector Machines: essentially a linear model of the data, used to separate groups.

Neural networks: a weird algorithmic approach to using functions to categorize data.

There isn’t time to cover all of these. Today we’ll cover Decision Trees and kNN.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 6 / 30

Decision Trees

A Decision Tree is a structure which classifies
an input based on a number of binary
decisions.

It splits the data set based on one of the p
”features” of the data.

”Features” are the independent variables
associated with the data (x1, x2, ..., xp).

sex = male

age >= 9.5

sibsp >= 2.5
660 / 796

19 / 20 24 / 27

339 / 466

died

died survived

survived

yes no

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 7 / 30

Decision Trees, continued

Data can be split based on

discrete data (”if category == A”) or,

continuous data (”if height < 1.5m”)

The goal of developing a decision tree is to
determine when and where and how to split
the data, so as to maximize the ’purity’ of
the resulting sub-data set.

A good decision tree will have ”leaves” (ends
of the tree) which are as pure as possible.

sex = male

age >= 9.5

sibsp >= 2.5
660 / 796

19 / 20 24 / 27

339 / 466

died

died survived

survived

yes no

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 8 / 30

Muppet data set
Consider this data set. The goal is to create a decision tree algorithm which classifies Muppet
characters as Sesame Street (SS) or not.

Name colour cloths eye brows ball nose SS

Kermit green FALSE FALSE FALSE FALSE

Grover blue FALSE FALSE TRUE TRUE

Bert yellow TRUE TRUE TRUE TRUE

Sam the Eagle blue FALSE TRUE FALSE FALSE

Oscar green FALSE TRUE FALSE TRUE

Miss Piggy tan TRUE FALSE FALSE FALSE

Given this data, how does your algorithm do on this data?

Name colour cloths eye brows ball nose SS

Gonzo blue TRUE FALSE FALSE ??

Big Bird yellow FALSE FALSE FALSE ??

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 9 / 30

Splitting algorithms

Consider the following two possible first splits:

Split based on ’ball nose’.
▶ ball nose == TRUE: we get Grover, Bert (SS).
▶ ball nose == FALSE: we get Kermit, Sam the Eagle, Miss Piggy (not SS), Oscar (SS).

Split based on ’cloths’.
▶ cloths == TRUE: we get Bert (SS), Miss Piggy (not SS).
▶ cloths == FALSE: we get Kermit, Sam the Eagle (not SS), Grover, Oscar (SS).

There’s a sense in which the ball nose split is clearly better. It leads to two groups, one of
which is totally Sesame Street, and the other which is mostly not.

The other choice gives you two groups which are just as heterogeneous as the original data.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 10 / 30

Splitting algorithms, continued

Algorithms which split the data rank possible splits based on increasing ’purity’ of the two
subgroups it generates.

Consider the probability p that a member of one of the labels is in a given target category.
Two common measures for the ’impurity’ of the generated groups are given by

Gini index:
∑

p(1 − p)

Entropy: −
∑

[p ln p + (1 − p) ln (1 − p)]

Where the sum is over all labels and possible
values in the given target category. A perfect
Gini index is an impurity of 0, or a probability
of 0 or 1.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 11 / 30

Splitting algorithms, continued more

So how do these algorithms proceed?

While every data point is not in a pure sub-tree:
▶ For each feature which we haven’t yet split upon, for the data remaining in the sub-tree,

consider a split:
⋆ If the feature is categorical, consider all values, split by value and measure the impurity of the

resulting subgroups.
⋆ If the feature is continuous, use line optimization to choose the best point at which to split,

keeping track of the impurity at that point.

▶ Choose the split which maximizes the change in the impurity (smallest impurity value), and
split the data.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 12 / 30

Decision trees in R

Let’s use an R package to build a decision
tree. We’ll use the Iris data set.

The data consists as four
measurements of 150 wild irises of 3
species.

It’s a classic classification problem.

It’s one of the data sets which comes
with R.

We first randomly split the iris data
set, 70/30, into training and test data
sets.

>

> str(iris)

’data.frame’: 150 obs. of 5 variables:
$Sepal.Length: num 5.1 4.9 4.7 4.6 5 ...

$Sepal.Width : num 3.5 3 3.2 3.1 3.6 ...

$Petal.Length: num 1.4 1.4 1.3 1.5 1.4 ...

$Petal.Width : num 0.2 0.2 0.2 0.2 0.2 ...

$Species : Factor w/ 3 levels ...

>

> ind <- sample(c(TRUE, FALSE), nrow(iris),

+ replace = T, prob = c(0.7, 0.3))

> train.d <- iris[ind,]

> test.d <- iris[!ind,]

>

http://en.wikipedia.org/wiki/Iris_

flower_data_set

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 13 / 30

http://en.wikipedia.org/wiki/Iris_flower_data_set
http://en.wikipedia.org/wiki/Iris_flower_data_set

Training versus Testing

In general, we get our data, and that’s it. We don’t have the luxury of generating more data
on a whim.

We would like to do out-of-sample testing of whatever model we generate, to see how it does
against new data. But we don’t have any new data.

The solution is to hold out some of the original data. Most of the data is used for training the
model, the rest is used for testing it. These data should be chosen randomly, as in the previous
slide.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 14 / 30

R analysis, an example, continued

Now that the data’s split up, we’re ready to
generate the tree.

Load the ’rpart’ and ’rpart.plot’
(non-standard) libraries.

Create our formula (Note the simpler
syntax which you can use).

Generate the decision tree.

Plot the result.

>

> library(rpart)

> library(rpart.plot)

>

> f <- Species ~ Sepal.Length + Sepal.Width +

+ Petal.Length + Petal.Width

>

> f <- Species ~ . # same as above

>

> iris.tree <- rpart(f, data = train.d)

>

> rpart.plot(iris.tree)

>

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 15 / 30

Our decision tree

Petal.Length < 2.5

Petal.Width < 1.8

versicolor
.32 .35 .33

100%

setosa
1.00 .00 .00

32%

versicolor
.00 .51 .49

68%

versicolor
.00 .93 .07

37%

virginica
.00 .03 .97

31%

yes no

setosa
versicolor
virginica

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 16 / 30

Confusion matrix
How do you determine the effectiveness of a classifier? You can count the number incorrectly
classified, but this doesn’t give you much information you can use to improve the result.

The ’Confusion Matrix’, tells you which misclassifications happened. Traditionally, ’true’
classifications are on the rows, and predictions are on the columns.

> pred <- predict(iris.tree, type = ’class’)

>

> sum(train.d$Species == pred) / nrow(train.d)

[1] 0.9611650

>

> table(train.d$Species, pred)

setosa versicolor virginica

setosa 36 0 0

versicolor 0 35 1

virginica 0 3 28

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 17 / 30

R analysis, an example, continued more

Ok, but how does the decision tree do
on the test data?

Test the built tree against the test
data.

Print out the table of results.

Not bad!

>

> testPred <- predict(iris.tree,

+ newdata = test.d, type = ’class’)

>

> sum(test.d$Species == testPred) / nrow(test.d)

[1] 0.957447

>

> table(test.d$Species, testPred)

setosa versicolor virginica

setosa 14 0 0

versicolor 0 14 0

virginica 0 2 17

>

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 18 / 30

Trees and over-fitting

As with polynomials and regression, we can easily produce overly-complex decision trees which
do great on the training data, but don’t generalize.

This happens when the number of free (trainable) parameters in the model is similar to the
number of data.

In fact, this is guaranteed to happen with decision trees, since given enough splits, it will
always perfectly classify the data.

How do we deal with this? The usual approach is to prune the tree at some level, where the
results are ”good enough”, and the model is not ”too complex”.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 19 / 30

Random forests

You may have heard of ”random forests”. What are those?

Random forests fall under the category of ”ensemble methods”. This means an averaging
over several machine-learning models.

In this case, a random forest is an average over a collection of decision trees.

To do this,
▶ bootstrapping is applied to the data set in question, and decision trees are fit to each sample;
▶ however, during the training of the trees, at each split only a subset of possible features are

chosen as split candidates;
▶ predictions on out-of-sample data are then generated, and an average over all trees is made.

This results in a lowering of the overfitting, which is inherently large with decision trees.

If you end up using decision trees in your research, random forests are worth considering.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 20 / 30

Nearest neighbours - kNN

Consider a more-geometric approach to
classification: given an input data point, find the
nearest point in the training set, and choose that
classification for your input data point.

This is a type of regression.

A generalization is to choose the k Nearest
Neighbours (kNN), and choose the classification
that the majority of those k points has.

This case: two 2D Gaussians, centred on (-1,-1)
(red), and (1,1) (blue) with σ = 1.5, k = 1.

1.0

1.2

1.4

1.6

1.8

2.0

−4 −2 0 2 4

−4

−2

0

2

4

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 21 / 30

Nearest neighbours - kNN, continued
library(class); n <- 100

Generate Gaussian data.

x1 <- rnorm(n, -1, 1.5); y1 <- rnorm(n, -1, 1.5)

x2 <- rnorm(n, 1, 1.5); y2 <- rnorm(n, 1, 1.5)

Generate mesh for plotting.

x.range <- seq(-5, 5, length = n)

x3 <- rep(x.range, n)

y3 <- rep(x.range, each = n)

Put the data in data frames.

data <- data.frame(x = c(x1, x2), y = c(y1, y2))

grid.data <- data.frame(x = x3, y = y3)

Create labels for the data.

labels <- rep(c(1, 2), each = n)

Make predictions, based on

the training data.

p <- as.integer(knn(train = data,

test = grid.data, cl = labels))

Make the result 2D.

dim(p) <- c(n, n)

Make the plot.

filled.contour(x.range, x.range, p

plot.axes = {axis(1); axis(2);

points(x1, y1, pch = 16,

col = "red", xlim = c(-5, 5),

ylim = c(-5, 5), ann = F);

points(x2, y2, pch = 16,

col = "blue", xlim = c(-5, 5),

ylim = c(-5, 5), ann = F)}
)

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 22 / 30

Bias-variance in kNN

There’s a bias-variance-like trade-off in
kNN, as can be seen by varying k on the
same data.

At low k, the variance is very large. The
model is trying to fit to every single point.

At higher k, we average over a large area,
and we start to lose features.

1.0

1.2

1.4

1.6

1.8

2.0

−4 −2 0 2 4

−4

−2

0

2

4

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

k = 1

1.0

1.2

1.4

1.6

1.8

2.0

−4 −2 0 2 4

−4

−2

0

2

4

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

k = 3

1.0

1.2

1.4

1.6

1.8

2.0

−4 −2 0 2 4

−4

−2

0

2

4

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

k = 7

1.0

1.2

1.4

1.6

1.8

2.0

−4 −2 0 2 4

−4

−2

0

2

4

● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

k = 13

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 23 / 30

Bias-variance in kNN, continued

On the right we see 4 instances of the
previous data set. The model has been
built with k = 1 for all 4. It’s clear that
the decision boundary varies widely from
one run to the next.

1.0

1.2

1.4

1.6

1.8

2.0

−4 −2 0 2 4

−4

−2

0

2

4

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

1.0

1.2

1.4

1.6

1.8

2.0

−4 −2 0 2 4

−4

−2

0

2

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

1.0

1.2

1.4

1.6

1.8

2.0

−4 −2 0 2 4

−4

−2

0

2

4

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

1.0

1.2

1.4

1.6

1.8

2.0

−4 −2 0 2 4

−4

−2

0

2

4

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 24 / 30

Scaling continuous features

In the iris data set, petal length varies over a much greater range than sepal width. If we just
use Euclidean distance for kNN, sepal width will provide very little information: all points are
close to each other in that dimension.

We want the information in all variables to contribute to the solution. To this end, we should
scale the variables to that they all get to play. A common technique is to centre the variables
by subtracting off their means, and then scaling them by their standard deviations.

x′ =
x − µ

σx

Many libraries will do this for you, for methods where it matters. But not all will; check the
documentation!

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 25 / 30

The caret package

The caret package has many many
Machine Learning algorithms built into it,
including kNN. It can be used to determine
the most-important features of the data.

It will also select the best value for k.

The ’tuneLength’ is the number of values
of k caret will consider.

> library(caret)

>

> ind <- sample(c(T,F), nrow(iris),

+ replace = T, prob = c(0.7, 0.3))

>

> train.d <- iris[ind,]

> test.d <- iris[!ind,]

>

> fit.control <- trainControl(method = ’cv’,

+ number = 10)

>

> knnFit <- train(Species ~ .,

+ data = train.d, method = ’knn’,

+ preProcess = c(’center’, ’scale’),

+ trControl = fit.control,

+ tuneLength = 20)

>

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 26 / 30

The caret package, continued

> knnFit
.
.
.

Pre-processing: centered (4), scaled (4)

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 104, 104, 104, 104, 104, 104, ...

Resampling results across tuning parameters:

k Accuracy Kappa

5 0.9531313 0.9292578

7 0.9725758 0.9584244
.
.
.

41 0.8293434 0.7437357

43 0.8293434 0.7437357

The final value used for the model was k = 7.

> plot(knnFit)

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 27 / 30

The caret analysis

#Neighbors

A
cc

ur
ac

y
(C

ro
ss

−
V

al
id

at
io

n)

0.85

0.90

0.95

10 20 30 40

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 28 / 30

The caret package, continued
> knnPredict <- predict(knnFit, newdata = test.d)

>

> table(knnPredict, test.d$Species)

setosa versicolor virginica

setosa 10 0 0

versicolor 0 16 1

virginica 0 2 17

>

> varImp(knnFit)

ROC curve variable importance

variables are sorted by maximum importance across the classes

setosa versicolor virginica

Petal.Length 100.00 100.00 100.00

Petal.Width 100.00 100.00 100.00

Sepal.Length 97.21 93.79 97.21

Sepal.Width 0.00 51.31 51.31

>

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 29 / 30

Summary

Things to remember from today:

Decision tree strength: can sensibly deal with categorical data.

Decision tree strength: preform implicit feature selection.

Decision tree strength: easy to understand (and explain) the results.

Decision tree weakness: prone to over-fitting.

kNN strength: completely non-parametric (data can take any form).

kNN strength: works in as many dimensions as you like.

kNN weakness: slow if there are too many data points.

kNN weakness: doesn’t handle categorical data.

Note that there are other classification algorithms out there: logistic regression, naive
Bayes, support vector machines, etc.

Erik Spence (SciNet HPC Consortium) Classification I 31 October 2024 30 / 30

	Classification
	Classification approaches

	Decision Trees
	Example data
	Splitting impurity
	Decision Tree example
	Confusion matrix

	kNN
	Bias-variance
	caret package

