
Scripts in R
Introduction to Computational BioStatistics with R

Alexey Fedoseev

October 1, 2024

Alexey Fedoseev Scripts in R October 1, 2024 1 / 21

Installing R packages

R makes it easy to install additional packages.
> install.packages("ggplot2")
Installing package into '/Users/alexey/R/x86_64-pc-linux-gnu-library/3.5'
(as 'lib' is unspecified)
--- Please select a CRAN mirror for use in this session ---
...
* DONE (ggplot2)
...

Alexey Fedoseev Scripts in R October 1, 2024 2 / 21

Navigation in R

Sometimes you need to know where you are, so that you can find data, and other things.
> getwd()
[1] "/Users/alexey/Documents/"
> setwd("code")
> getwd()
[1] "/Users/alexey/Documents/code"
> dir()
[1] "vectorUtils.R"

Alexey Fedoseev Scripts in R October 1, 2024 3 / 21

Creating your own collections of functions

As you develop your research you will build a collection of functions which do all sorts of
wonderful things. How should you manage your collections of functions?

You should only have one copy of any given function. Put it in a file and use it when you
need it.
The one copy you keep should be well-tested, well-commented, and trustworthy.
If you have five copies of a function, how do you remember which one you should use?
Keep your functions in files. Keep related functions in the same file.
Name your functions and files sensibly.

But how do I access a function once I’ve written it?

Alexey Fedoseev Scripts in R October 1, 2024 4 / 21

Scripts
Let us say you have created a helpful function vectorToString and saved in a file
vectorUtils.R
vectorUtils.R
Concatenates the vector using semicolons between the elements
vectorToString <- function(vec) {

return(paste(vec, collapse = "; "))
}

The source command gives you access to the functions stored in a file. The source command
reads and executes the whole file as if you were typing the lines at the R prompt.
> source("vectorUtils.R")
> popular.cars <- c("Audi", "Mercedes-Benz", "BMW")
> cat("Popular German car manufacturers are",
+ vectorToString(popular.cars), "\n")
Popular German car manufacturers are Audi; Mercedes-Benz; BMW

Alexey Fedoseev Scripts in R October 1, 2024 5 / 21

Reloading your file
If we decide to separate our values in the vector using commas instead of semicolons we need to
reload the file vectorUtils.R in our R prompt after we made the changes.
vectorUtils.R
Concatenates the vector using commas between the elements
vectorToString <- function(vec) {

return(paste(vec, collapse = ", "))
}

> cat("Popular German car manufacturers are",
+ vectorToString(popular.cars), "\n")
Popular German car manufacturers are Audi; Mercedes-Benz; BMW
> source("vectorUtils.R")
> cat("Popular German car manufacturers are",
+ vectorToString(popular.cars), "\n")
Popular German car manufacturers are Audi, Mercedes-Benz, BMW

Alexey Fedoseev Scripts in R October 1, 2024 6 / 21

Scripts
Putting our commands in a script popular_cars.R allows us to save the work.
vectorUtils.R
Concatenates the vector using commas between the elements
vectorToString <- function(vec) {

return(paste(vec, collapse = ", "))
}

popular_cars.R
source("vectorUtils.R") # Importing function vectorToString
popular.cars <- c("Audi", "Mercedes-Benz", "BMW")
cat("Popular car manufacturers are", vectorToString(popular.cars), "\n")

user@scinet code $ Rscript popular_cars.R
Popular car manufacturers are Audi, Mercedes-Benz, BMW

Be careful if you copy-and-paste from the R prompt into an editor. Do not copy the > and +
prompts into your script.

Alexey Fedoseev Scripts in R October 1, 2024 7 / 21

Command line arguments
Now you want to improve your program by adding more car manufacturers. So far we can do
that by changing the variable popular.cars in the script popular_cars.R. However changing
the file every time is tedious. Instead we can specify the car brands as parameters for the script,
therefore you do not store the values in the script but rather you receive them when you run
your script from Bash.

Let us create a new file popular_cars_cli.R (CLI stands for Command-line interface) with
the following contents.
popular_cars_cli.R
args <- commandArgs(trailingOnly = TRUE)
cat("The command line arguments are", args, "\n")

Run your script popular_cars_cli.R with several parameters.

user@scinet code $ Rscript popular_cars_cli.R Audi Volkswagen BMW Porsche
The command line arguments are Audi Volkswagen BMW Porsche

Alexey Fedoseev Scripts in R October 1, 2024 8 / 21

Command line arguments

Now add the following lines in the file popular_cars_cli.R.
Importing function vectorToString
source("vectorUtils.R")

All arguments have to contain car brands
popular.cars <- args

cat("Popular car manufacturers are", vectorToString(popular.cars), "\n")

And the run your script with several command line arguments.

user@scinet code $ Rscript popular_cars_cli.R Audi Volkswagen BMW Porsche
The command line arguments are Audi Volkswagen BMW Porsche
Popular car manufacturers are Audi, Volkswagen, BMW, Porsche

Alexey Fedoseev Scripts in R October 1, 2024 9 / 21

Command line arguments
Notice that the variable args is a vector of strings. It means that if you want to compare the
first argument to something else, you should directly reference the first argument.
popular_cars_cli.R
args <- commandArgs(trailingOnly = TRUE)
cat("The command line arguments are", args, "\n")
source("vectorUtils.R") # Importing function vectorToString
if (args[1] == "Lada") { # Lada is not a popular brand

popular.cars <- args[-1] # Exclude Lada from popular cars
} else {

popular.cars <- args # All arguments have to contain car brands
}
cat("Popular car manufacturers are", vectorToString(popular.cars), "\n")

user@scinet code $ Rscript popular_cars_cli.R Lada Audi Volkswagen BMW Porsche
The command line arguments are Lada Audi Volkswagen BMW Porsche
Popular car manufacturers are Audi, Volkswagen, BMW, Porsche

Alexey Fedoseev Scripts in R October 1, 2024 10 / 21

Command line arguments
We can improve our script by excluding the unpopular cars brands. Let us define a variable
containing the unpopular brands and using already known to us command %in% determine
which car brands we want to exclude.
> unpopular.cars <- c("Lada", "Opel", "Buick", "Peugeot", "Lifan")
> c("Buick", "Volkswagen") %in% unpopular.cars
[1] TRUE FALSE

popular_cars_cli.R
args <- commandArgs(trailingOnly = TRUE)
source("vectorUtils.R") # Importing function vectorToString
unpopular.cars <- c("Lada", "Opel", "Buick", "Peugeot", "Lifan")
popular.cars <- args[!args %in% unpopular.cars] # exclude unpopular brands
cat("Popular car manufacturers are", vectorToString(popular.cars), "\n")

user@scinet code $ Rscript popular_cars_cli.R Buick Audi Peugeot BMW Buick
Popular car manufacturers are Audi, BMW

Alexey Fedoseev Scripts in R October 1, 2024 11 / 21

Utility files and driver programs

The general framework we will use for this course is to have utilities files and driver scripts.

The utilities files will contain the definitions of the functions you need to work on your data (like
our file vectorUtils.R).

It is common to have multiple utilities files, containing functions for performing different types
of analyses.

The driver script “drives” the analysis, calling the functions in the utilities files as needed to
accomplish whatever you are doing.

The functions in the utilities file are often used by a variety of different driver scripts (like our
files popular_cars.R and popular_cars_cli.R).

Alexey Fedoseev Scripts in R October 1, 2024 12 / 21

Utility files
Let us add more functionality to our vectorToString function. Currently the function works
like this:
> vectorToString(c("Porsche", "Mercedes-Benz", "Audi"))
[1] "Porsche, Mercedes-Benz, Audi"

However, I would like to see the output like that: "Porsche, Mercedes-Benz and Audi".
Notice that the last two elements are separated using and instead of a comma.

If you just go and modify our function vectorToString it may affect the programs that
already use if functionality, so we will be more careful.

You need to decide whether the functionality you are adding to the function is small enough to
just slightly modify the function without changing much the code that uses it.

If you feel that the changes are going to be significant, it is best to just leave this function as it
is now and create another function with additional functionality, meaning you would have a
simple version that you can use as a backup.

Alexey Fedoseev Scripts in R October 1, 2024 13 / 21

Improving functionality
The changes we are about to add to our function vectorToString are not that significant and
we can actually make them without changing the code that uses this function.

Let us modify the function vectorToString in our file vectorUtils.R.
vectorToString <- function(vec, last.and = FALSE) {

if (last.and & length(vec) > 1) { # Skip if vec has only one element
Concatenate all elements except the last one using commas
str.with.commas <- paste(vec[-length(vec)], collapse = ", ")
Concatenate the last element using "and"
str.with.and <- paste(str.with.commas, "and", vec[length(vec)])
return(str.with.and)

} else
Concatenate all elements using commas
return(paste(vec, collapse = ", "))

}

Alexey Fedoseev Scripts in R October 1, 2024 14 / 21

Testing functionality

To avoid any surprises we need to test if our improved function still gives the same result as
before.
> source("vectorUtils.R")
> vectorToString(c("Porsche", "Mercedes-Benz", "Audi"))
[1] "Porsche, Mercedes-Benz, Audi"

As we see, with the help of the default arguments we do not need to change our driver script
popular_cars_cli.R as by default the function will use commas to concatenate the strings as
before.

Let us test the new functionality.
> vectorToString(c("Porsche", "Mercedes-Benz", "Audi"), TRUE)
[1] "Porsche, Mercedes-Benz and Audi"

Alexey Fedoseev Scripts in R October 1, 2024 15 / 21

Testing functionality

After verifying that the function works properly we can turn on the new functionality in the
driver script popular_cars_cli.R.
popular_cars_cli.R
args <- commandArgs(trailingOnly = TRUE)
source("vectorUtils.R") # Importing function vectorToString
unpopular.cars <- c("Lada", "Opel", "Buick", "Peugeot", "Lifan")
popular.cars <- args[!args %in% unpopular.cars] # exclude unpopular brands
cat("Popular car manufacturers are",

vectorToString(popular.cars, last.and = TRUE), "\n")

user@scinet code $ Rscript popular_cars_cli.R Porsche Mercedes-Benz Audi
Popular car manufacturers are Porsche, Mercedes-Benz and Audi

Alexey Fedoseev Scripts in R October 1, 2024 16 / 21

Testing functionality

Once you have written the basic functionality of your program you need to test it with different
parameters to see how it works in the situations you did not think of in the first place, for
example using only one brand:

user@scinet code $ Rscript popular_cars_cli.R Porsche
Popular car manufacturers are Porsche
user@scinet code $ Rscript popular_cars_cli.R
Popular car manufacturers are

Alexey Fedoseev Scripts in R October 1, 2024 17 / 21

Testing functionality
It would be nice to show an example on how to use our script to someone who does not know
how to run it.
popular_cars_cli.R
args <- commandArgs(trailingOnly = TRUE)
Show the usage example if no parameters were specified
if (length(args) == 0) {

cat("usage example: Rscript popular_cars_cli.R Porsche Mercedes-Benz\n")
quit()

}
...

user@scinet code $ Rscript popular_cars_cli.R
usage example: Rscript popular_cars_cli.R Porsche Mercedes-Benz

Notice that we do not need else in our if statement since the command quit() completely
stops the program and no code below this command will run.

Alexey Fedoseev Scripts in R October 1, 2024 18 / 21

Testing functionality
We also need to correctly handle the situation when only one car brand is specified.
popular_cars_cli.R
...
popular.cars <- args[!args %in% unpopular.cars] # exclude unpopular brands
if (length(popular.cars) > 1) {

manufacturers.string <- "manufacturers are"
} else if (length(popular.cars) == 1) {

manufacturers.string <- "manufacturer is"
} else { # Show the full list of unpopular cars

cat(vectorToString(unpopular.cars, last.and = TRUE),
"are not very popular.\n")

quit()
}
Create a full sentence using proper copulas (is or are)
cat("Popular car", manufacturers.string,

vectorToString(popular.cars, last.and = TRUE), "\n")
Alexey Fedoseev Scripts in R October 1, 2024 19 / 21

Summing up
Now we have a functional program!

user@scinet code $ Rscript popular_cars_cli.R
usage example: Rscript popular_cars_cli.R Porsche Mercedes-Benz
user@scinet code $ Rscript popular_cars_cli.R Lifan
Lada, Opel, Buick, Peugeot and Lifan are not very popular.
user@scinet code $ Rscript popular_cars_cli.R Lada Buick
Lada, Opel, Buick, Peugeot and Lifan are not very popular.
user@scinet code $ Rscript popular_cars_cli.R Lifan Buick Porsche
Popular car manufacturer is Porsche
user@scinet code $ Rscript popular_cars_cli.R Porsche
Popular car manufacturer is Porsche
user@scinet code $ Rscript popular_cars_cli.R Porsche Mercedes-Benz
Popular car manufacturers are Porsche and Mercedes-Benz
user@scinet code $ Rscript popular_cars_cli.R Porsche Mercedes-Benz Audi
Popular car manufacturers are Porsche, Mercedes-Benz and Audi

Alexey Fedoseev Scripts in R October 1, 2024 20 / 21

Further improvement

Our program works quite well, however there are still ways to improve it.

One of them is to use the command tolower when comparing the strings. It is useful if
someone spells lada instead of Lada.
> tolower(c("Lada", "Mercedes-Benz"))
[1] "lada" "mercedes-benz"
> c("lada","opel") %in% tolower(c("Lada","Opel","Buick","Peugeot","Lifan"))
[1] TRUE TRUE

While developing your program you will find several use cases that you have not thought of
beforehand. It is normal to revise your code accordingly and take care of such use cases later.

Meanwhile, instead of letting your program to crash unexpectedly, just display a simple message
like “this feature will be implemented in later versions” to remind yourself what to focus on later
and let others know that you are aware of this use case.

Alexey Fedoseev Scripts in R October 1, 2024 21 / 21

	Topics

