
Vectors and data frames in R
Introduction to Computational BioStatistics with R

Alexey Fedoseev

September 19, 2024

Alexey Fedoseev Vectors and data frames in R September 19, 2024 1 / 22



Vectors
We know how to store a value in a variable. To view what value is stored in a variable we can
simply type the name of the variable in R prompt.
> myapple <- "Big Red Delicious Apple"
> myapple
[1] "Big Red Delicious Apple"

Now we have a task to buy fruits and vegetables of the shopping list:

Apple
Orange
Lemon
Potato
Cabbage

From what we already know, we can create a separate variable containing each item on our
shopping list. However, there is a better way to store our list!

Alexey Fedoseev Vectors and data frames in R September 19, 2024 2 / 22



Vectors

We are going to use vectors to store our shopping list.

A vector is a sequence of elements of the same basic type.

In order to create a vector use the c command that combines values into a vector.
> fruits <- c("Apple", "Orange", "Lemon")
> str(fruits)
chr [1:3] "Apple" "Orange" "Lemon"

> vegetables <- c("Potato", "Cabbage")
> str(vegetables)
chr [1:2] "Potato" "Cabbage"

> shopping_list <- c(fruits, vegetables)
> str(shopping_list)
chr [1:5] "Apple" "Orange" "Lemon" "Potato" "Cabbage"

Alexey Fedoseev Vectors and data frames in R September 19, 2024 3 / 22



Vectors
After we created the vector it is usually important to access its elements. Every element in a
vector is referenced by the index. Adding the square brackets with the number inside to the
variable name prints out the value stored in this variable at this index.
> fruits
[1] "Apple" "Orange" "Lemon"
> fruits[1]
[1] "Apple"
> fruits[2]
[1] "Orange"
> fruits[3]
[1] "Lemon"
> cat("I need to buy one", fruits[1], "\n")
I need to buy one Apple

Note that indices of the vector in R start with 1.
Alexey Fedoseev Vectors and data frames in R September 19, 2024 4 / 22



Vectors
We can access multiple elements in the vector by specifying the vector of indices. R provides us
with a fast way to generate a vector of sequential numbers.
> fruits[c(1,3)]
[1] "Apple" "Lemon"
> 1:5
[1] 1 2 3 4 5
> fruits[1:2]
[1] "Apple" "Orange"

If we ask for the elements that are not in the vector, R will print out an NA value (Not
Available/Missing Value).
> fruits[4]
[1] NA
> fruits[1:5]
[1] "Apple" "Orange" "Lemon" NA NA

Alexey Fedoseev Vectors and data frames in R September 19, 2024 5 / 22



Vectors

When R encounters a negative index it skips the corresponding element. Notice that the fruits
variable did not change.
> fruits
[1] "Apple" "Orange" "Lemon"
> fruits[-1]
[1] "Orange" "Lemon"
> fruits
[1] "Apple" "Orange" "Lemon"

Often it is useful to use logical values TRUE or FALSE to indicate which element to keep (TRUE)
or remove (FALSE).
> fruits[c(TRUE, FALSE, TRUE)]
[1] "Apple" "Lemon"

Alexey Fedoseev Vectors and data frames in R September 19, 2024 6 / 22



Vectors
How many items are on my shopping list? Use the command length to count the number of
elements in the vector.
> fruits
[1] "Apple" "Orange" "Lemon"
> length(fruits)
[1] 3
> shopping_list
[1] "Apple" "Orange" "Lemon" "Potato" "Cabbage"
> length(shopping_list)
[1] 5

Do you have apples on your list? Check it using %in% command
> "Apple" %in% shopping_list
[1] TRUE
> "Mango" %in% shopping_list
[1] FALSE

Alexey Fedoseev Vectors and data frames in R September 19, 2024 7 / 22



Vectors
We can store numerical values and other data types in a vector as well.
> mynumbers <- c(1,5,3,7,5)
> str(mynumbers)
num [1:5] 1 5 3 7 5

But, what happens if we create a vector of mixed data types?
> mymix <- c(FALSE, 1)
> str(mymix)
num [1:2] 0 1

> mymix <- c(FALSE, 1, "Apple")
> str(mymix)
chr [1:3] "FALSE" "1" "Apple"

R converts every element of the vector into the type that suits all values. At first, a boolean
FALSE was converted in a numerical 0. However, adding a string "Apple" converts every
element into a string.

Alexey Fedoseev Vectors and data frames in R September 19, 2024 8 / 22



Vectors
We can easily perform operations on the whole vector.
> mynumbers
[1] 1 5 3 7 5
> mynumbers + 10
[1] 11 15 13 17 15
> mynumbers * mynumbers
[1] 1 25 9 49 25

Very often we want to establish what elements of the vector satisfy a particular condition. This
is called conditional slicing or subsetting.
> (mynumbers > 2) & (mynumbers < 6)
[1] FALSE TRUE TRUE FALSE TRUE
> mynumbers[(mynumbers > 2) & (mynumbers < 6)]
[1] 5 3 5

Alexey Fedoseev Vectors and data frames in R September 19, 2024 9 / 22



Vectors
To make our shopping list useful we need to add quantities. We want our shopping list to look
like an Excel spreadsheet with rows and columns. Let us use already defined variable mynumbers
as our quantities.
> mynumbers
[1] 1 5 3 7 5
> shopping.cart <- cbind(shopping_list, mynumbers)
> shopping.cart

shopping_list mynumbers
[1,] "Apple" "1"
[2,] "Orange" "5"
[3,] "Lemon" "3"
[4,] "Potato" "7"
[5,] "Cabbage" "5"

Notice how R converted all elements into strings. The resulting shopping.cart is represented
as a matrix.

Alexey Fedoseev Vectors and data frames in R September 19, 2024 10 / 22



Matrices

A matrix is a collection of elements of the same data type arranged in a two-dimensional
rectangular layout. You can think of a matrix as a mentioned earlier Excel spreadsheet.

Using the command cbind we can add more columns with details to our shopping cart.
> locations <- c("Costco", "Walmart", "Walmart", "Zehrs", "Walmart")
> shopping.cart <- cbind(shopping.cart, locations)
> shopping.cart

shopping_list mynumbers locations
[1,] "Apple" "1" "Costco"
[2,] "Orange" "5" "Walmart"
[3,] "Lemon" "3" "Walmart"
[4,] "Potato" "7" "Zehrs"
[5,] "Cabbage" "5" "Walmart"

Alexey Fedoseev Vectors and data frames in R September 19, 2024 11 / 22



Column names

We can improve our shopping.cart by renaming our columns using colnames command.
> colnames(shopping.cart)
[1] "shopping_list" "mynumbers" "locations"
> colnames(shopping.cart) <- c("Items", "Quantities", "Locations")
> shopping.cart

Items Quantities Locations
[1,] "Apple" "1" "Costco"
[2,] "Orange" "5" "Walmart"
[3,] "Lemon" "3" "Walmart"
[4,] "Potato" "7" "Zehrs"
[5,] "Cabbage" "5" "Walmart"

Alexey Fedoseev Vectors and data frames in R September 19, 2024 12 / 22



Data frames
Our shopping cart looks good, however quantities should be numbers instead of strings. It is
important as we can perform mathematical operations on numbers and not on strings. Data
frames allow us to store various data types in one variable. Since data frame type is more
suitable for our shopping cart, we will overwrite the variable shopping.cart.
> shopping.cart <- data.frame(shopping_list, mynumbers, locations)
> shopping.cart

shopping_list mynumbers locations
1 Apple 1 Costco
2 Orange 5 Walmart
3 Lemon 3 Walmart
4 Potato 7 Zehrs
5 Cabbage 5 Walmart

How to choose between a matrix or a data frame? You should use matricies if you perform a lot
of mathematical operations on a very large amount of numbers. This will ensure your
calculations to be more efficient. Otherwise, use data frames.

Alexey Fedoseev Vectors and data frames in R September 19, 2024 13 / 22



Data frames

Renaming the columns in a data frame as easy as in a matrix.
> colnames(shopping.cart) <- c("Items", "Quantities", "Locations")
> shopping.cart

Items Quantities Locations
1 Apple 1 Costco
2 Orange 5 Walmart
3 Lemon 3 Walmart
4 Potato 7 Zehrs
5 Cabbage 5 Walmart

Alexey Fedoseev Vectors and data frames in R September 19, 2024 14 / 22



Data frames

We can verify that our quantities in fact are numbers by using the command str.
> str(shopping.cart)
'data.frame': 5 obs. of 3 variables:
$ Items : Factor w/ 5 levels "Apple","Cabbage",..: 1 4 3 5 2
$ Quantities: num 1 5 3 7 5
$ Locations : Factor w/ 3 levels "Costco","Walmart",..: 1 2 2 3 2

Notice that Items and Locations have a factor data type which we have not seen before.

Note: in newer versions on R you need to add stringsAsFactors=TRUE to the list of parameters
for the command data.frame to get the same output, as the default behavior of this command
has changed. For example:
shopping.cart <- data.frame(shopping_list, mynumbers,

locations, stringsAsFactors=TRUE)

Alexey Fedoseev Vectors and data frames in R September 19, 2024 15 / 22



Factors

Factors help us to find out the categories in a vector and how are they all doing.

Since we only shop in Costco, Walmart and Zehrs, they will be our categories or levels.
> locations
[1] "Costco" "Walmart" "Walmart" "Zehrs" "Walmart"
> places <- factor(locations)
> places
[1] Costco Walmart Walmart Zehrs Walmart
Levels: Costco Walmart Zehrs
> summary(places)
Costco Walmart Zehrs

1 3 1

The command summary allows us to see how often each level appears in the vector.

Alexey Fedoseev Vectors and data frames in R September 19, 2024 16 / 22



summary

The summary command actually gives us more information if we use it on our shopping.cart.
> summary(shopping.cart)

Items Quantities Locations
Apple :1 Min. :1.0 Costco :1
Cabbage:1 1st Qu.:3.0 Walmart:3
Lemon :1 Median :5.0 Zehrs :1
Orange :1 Mean :4.2
Potato :1 3rd Qu.:5.0

Max. :7.0

The column Quantities shows us the statistics that are useful for the data analysis. For the
columns with factors summary gives us the frequencies of the levels.

Alexey Fedoseev Vectors and data frames in R September 19, 2024 17 / 22



Selecting columns
There are three ways to select a whole column in a data frame that are all equivalent to each
other. Additionally, you can refer to the column by its index (which is less descriptive but useful
sometimes).
> shopping.cart[["Quantities"]]
[1] 1 5 3 7 5
> shopping.cart[,"Quantities"]
[1] 1 5 3 7 5
> shopping.cart$Quantities
[1] 1 5 3 7 5
> shopping.cart[,2]
[1] 1 5 3 7 5

If you are using the dollar sign $ to extract the actual column and the column name has special
characters, it must be surrounded by quotes (shopping.cart$"Price/kg") or backticks
(shopping.cart$`Price/kg`).

Alexey Fedoseev Vectors and data frames in R September 19, 2024 18 / 22



Adding columns to a data frame

There is a convinient way to add a column to the data frame.
> prices.kg <- c(3.27, 3.9, 3.97, 3.49, 2.14)
> shopping.cart$Price <- prices.kg
> colnames(shopping.cart)
[1] "Items" "Quantities" "Locations" "Price"
> colnames(shopping.cart)[4] <- "Price/kg"
> shopping.cart

Items Quantities Locations Price/kg
1 Apple 1 Costco 3.27
2 Orange 5 Walmart 3.90
3 Lemon 3 Walmart 3.97
4 Potato 7 Zehrs 3.49
5 Cabbage 5 Walmart 2.14

Alexey Fedoseev Vectors and data frames in R September 19, 2024 19 / 22



Selecting rows

You can extract rows from the data frame using slicing.
> shopping.cart[c(2,4),]

Items Quantities Locations Price/kg
2 Orange 5 Walmart 3.90
4 Potato 7 Zehrs 3.49
> shopping.cart[c(2,4), c("Items", "Price/kg")]

Items Price/kg
2 Orange 3.90
4 Potato 3.49
> shopping.cart[2,"Items"]
[1] Orange
Levels: Apple Cabbage Lemon Orange Potato

Notice how selecting rows preserves all levels for the factors.

Alexey Fedoseev Vectors and data frames in R September 19, 2024 20 / 22



Conditional slicing or subsetting data
While looking at your shopping list you want to know if you need to bring the car and what
items you are buying at Walmart.
> shopping.cart$Quantities > 4
[1] FALSE TRUE FALSE TRUE TRUE
> shopping.cart[shopping.cart$Quantities > 4,]

Items Quantities Locations Price/kg
2 Orange 5 Walmart 3.90
4 Potato 7 Zehrs 3.49
5 Cabbage 5 Walmart 2.14
> shopping.cart$Location == "Walmart"
[1] FALSE TRUE TRUE FALSE TRUE
> shopping.cart[shopping.cart$Location == "Walmart",]

Items Quantities Locations Price/kg
2 Orange 5 Walmart 3.90
3 Lemon 3 Walmart 3.97
5 Cabbage 5 Walmart 2.14

Alexey Fedoseev Vectors and data frames in R September 19, 2024 21 / 22



Adding columns

You are also curious how much money you need to take with you to the store.
> shopping.cart$Total <- shopping.cart$Quantities * shopping.cart$`Price/kg`
> shopping.cart

Items Quantities Locations Price/kg Total
1 Apple 1 Costco 3.27 3.27
2 Orange 5 Walmart 3.90 19.50
3 Lemon 3 Walmart 3.97 11.91
4 Potato 7 Zehrs 3.49 24.43
5 Cabbage 5 Walmart 2.14 10.70

Using R command sum we can easily calculate how much money we need to have on us.
> cat("Total amount:", sum(shopping.cart$Total), "\n")
Total amount: 69.81

Alexey Fedoseev Vectors and data frames in R September 19, 2024 22 / 22


	Vectors
	Data frames

