
Introduction to Programming (SCMP142)

Ramses van Zon

November 2024

Ramses van Zon Introduction to Programming (SCMP142) November 2024 1 / 135

Section 1

Introduction

Ramses van Zon Introduction to Programming (SCMP142) November 2024 2 / 135

About this short course

The main point is to teach you the basics of programming!

We will be using the Python 3 programming language

Two one-hour sessions per week
Each sessions = mix of lecture + hands-on.

Topics

Statements, expressions, variables, functions, objects
Scripting
Input and output
Files and the file system
Modularity

Ramses van Zon Introduction to Programming (SCMP142) November 2024 3 / 135

Credit, certificates

Completing this course counts for 8 credits towards a SciNet Certificate in Scientific Computing.
(You would need 36 credits for the certificate.)

Completing this course means:
▶ Attending the sessions and taking the attendence test; and
▶ Taking and passing the online test after the last session.

Have to miss a session? Please inform us. In any case, you need to attend at least 5 sessions to get
credit.

This is not a course for UofT graduate credit.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 4 / 135

What is Programming?

We’re going to get stuff done using a computer.

But it will be stuff that is not be available in any existing application’s menus.

We will want to be able to repeat that same stuff again quickly.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 5 / 135

Required Software
Didn’t work? Here’s what you will need for the course:

A Python installation

Make sure you get Python 3 (not Python 2).
(e.g. from https://www.anaconda.com)

The command to use Python 3 may be python3
instead of python.

You could also work on SciNet:

$ ssh USERNAME@niagara.scinet.utoronto.ca
$ module load NiaEnv/2022a python/3.11.5
$ python

A text editor

You need an editor that can save in plain text format.
(e..g., nano, emacs, vi, notepad, gedit, vscode, . . .)

Working on an Apple device? Make sure you switch off “ Smart quotes ” in the settings.

A terminal or command prompt

Because running a Python program is easiest from the command line (a.k.a. “shell”).

E.g.: Bash, Mac Terminal, A-Shell, Anaconda Prompt, . . .

Ramses van Zon Introduction to Programming (SCMP142) November 2024 6 / 135

https://www.anaconda.com

What is Programming?

We’re going to get stuff done using a computer.

But it will be stuff that is not be available in any existing application’s menus.

We will want to be able to repeat that same stuff again quickly.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 7 / 135

Compute 9999 + 11111

Using a Graphical User Interface

Start up your computer.

On your computer, go to “Start”, “Applications”, “Calculator” (or your equivalent).

Note: this should open a graphical calculator.

On the keyboard, type 9999 .

Then type + .

Then type 11111 .

Then type = .

Read off the answer from the screen.

Note: Alternatively, you can select the corresponding buttons on screen with mouse clicks.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 8 / 135

Compute 9999 + 11111, again
Using the Python command line

On your computer, open a “terminal”.

This should give you some form of a terminal
prompt (or “shell prompt”).

$ will be used to denote the terminal prompt
in these slides, regardless of the form of the
terminal prompt for your system.

At the terminal prompt, type python .

This will give you a message regarding the
version of Python. (Try python3 instead if
the first number of the version is 2 or if just
python does not work).

It will also present you with a different
looking prompt, the Python prompt, either
>>> or In[1]:

After the Python prompt, type
print(9999+11111) , and press enter.

$ python
Python 3.9.12 (main, Apr 5 2022, 06:56:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" f
or more information.
>>> print(9999+11111)
21110
>>>

Ramses van Zon Introduction to Programming (SCMP142) November 2024 9 / 135

Compute 9999 + 11111, and again
A first Python application

On the same Python prompt, write

>>> f=open('app.py','w');f.write('print(9999+11111)');f.close()

This creates a file called “app.py”.

That file contains just one line:

print(9999+11111)

Because it contains Python code, it is a
Python application.

To run the program, type exit() in Python,
then type python app.py .

$ python
>>> print(9999+11111)
21110
>>> f=open('app.py','w')
>>> f.write('print(9999+11111)')
17
>>> f.close()
>>> exit()
$ python app.py
21110

Run the app again.
$ python app.py
21110

Ramses van Zon Introduction to Programming (SCMP142) November 2024 10 / 135

Automation is what it’s all about

Automating the actions performed with a GUI is next to impossible.

Once we had the text file “app.py”, automation was easy.

To create the file “app.py”, requires some extra up-front work and knowledge

(which we skipped over, and will usually do differently anyway)

Ramses van Zon Introduction to Programming (SCMP142) November 2024 11 / 135

Why No Integrated Development Environment?

Although graphical, IDEs are not ideal for learning basic Python.

The reason is that IDEs are big, with lots of configuration options and lots of functionality.

When starting to program, that just distracts from the act of coding itself.

Furthermore, every IDE is different, changes and evolves, so for instructional purposes, it is better to
stick with what works for everyone, everywhere, anytime.

But the command line is so much harder!

It is just different, so there are some things to get used to.

You may miss figuring out how to do something by looking at buttons
and menus, pointing and clicking.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 12 / 135

How to figure things out in Python

1) You can get documentation for nearly any function and package.

>>> help(print) # to get documentation about the print function

Anything after “#” on a line is ignored by Python, it’s a comment for your understanding.

Someone told me/I read online that comments are unnecessary. Don’t listen to them.
2) If you have the name of some data structure, you can ask what type it is.

>>> type(__name__) # get the type, a.k.a. the class, of __name__
<class 'str'>

3) Given some data structure, look inside it.

>>> dir(__name__) # look inside the __name__ structure

4) Or search the internet.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 13 / 135

Hands-on #1: Installation Check

Let’s make sure we all have a working Python
installation.

We will be using Python 3.

If you haven’t installed Python yet, the easiest
way to get it (currently) is probably anaconda.

Open the terminal, type python , then, after
the >>> prompt, type

print(9999+11111)

This should cause the number 21110 to be
printed on the screen.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 14 / 135

The Python Ecosystem

Although we will focus on the core Python
language, the true strength of Python is the
large body of available additional modules.

These modules provide all kinds of
functionality.

There are many modules in the standard
library that comes with Python
(“batteries included”).

E.g. modules for GUIs, databases, random
numbers, regular expressions, testing, . . .

There are even more third-party modules
available.

The official repository for third-party modules
is the Python Package Index
(https://pypi.org) with over 100,000
packages.

Most Python distributions come with the
“pip” command, with which you can install
packages from pypi.

(For Anaconda, you’d use the conda
command instead).

Ramses van Zon Introduction to Programming (SCMP142) November 2024 15 / 135

https://pypi.org

Different interfaces to Python
There are a number of ways to use Python:

1 Standard, non-interactive mode of Python

Open a terminal and type
python <SCRIPTNAME> , and the code gets

executed.
2 Standard, interactive mode of Python

Open a terminal and type python , and you
get a prompt like >>>.

You can type commands at the prompt, they
get executed, then you get another prompt.

3 IPython interactive mode

Requires IPython installation. Then type
ipython , and you get a In [1]: prompt.

Has tab completion, command history, special
commands.

4 Jupyter notebooks

Input and output cells in your browser, with
the Python back-end running possibly
remotely. Harder to convert to scripts.

https://jupyter.scinet.utoronto.ca
a. Jupyter Notebook
b. Jupyter Lab
c. VS Code jupyter emulation

Ramses van Zon Introduction to Programming (SCMP142) November 2024 16 / 135

https://jupyter.scinet.utoronto.ca

Which should I use?

Personally, I would recommend IPython for interactive work during this course.

Just keep in mind some of IPython’s special commands will not work in pure Python scripts.

IPython has a special command to save and reload your session:

In[1]: a='Hello'
In[2]: b='World'
In[3]: print(a,b)
Hello World
In[4]: %hist -f mysession.py
In[5]: %load mysession.py

The slides will nonetheless have the regular Python prompt >>>
and everything will work both in regular Python and IPython.
(In contrast to $ which stands for the terminal prompt.)

Ramses van Zon Introduction to Programming (SCMP142) November 2024 17 / 135

Section 2

What does Python really do?

Ramses van Zon Introduction to Programming (SCMP142) November 2024 18 / 135

Interpretation

What happens when we type print(9999+11111) on the Python prompt?

First, note that Python was waiting for input, and allows you to edit that input. It doesn’t ‘do’
anything until you hit enter.

(in case of IPython, you can scroll through history and use tab completion, which are not ‘doing
nothing’, but are still not doing Python)

Once you hit enter, Python will check syntax, identifying functions, keywords, arguments, special
characters, . . .

If it makes sense syntactically, it will then execute that command, i.e. translate it into (nested)
function calls that at the lowest level are in machine code that the CPU understands.

Python does this one line at a time, which puts it in the category of
interpreted languages.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 19 / 135

Example: 9999+11111

>>> print(9999+11111)

First action by Python: Syntax checking
(“Parsing”)

print is a name.

It should be a function, because it is followed
by parentheses.

The argument of the function is 9999+11111

This is two ‘literals’ (numbers), separated by
the plus sign, which is valid.

Second action by Python: Execution

Store the integer 9999.

Store the integer 11111.

Call the + operator, with those integers as
arguments.

This “returns” a new integer.

The print function is called with that new,
temporary integer as an argument.

Temporary integers are discarded.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 20 / 135

Section 3

Basic elements of the Python language

Ramses van Zon Introduction to Programming (SCMP142) November 2024 21 / 135

Variables
You can give names to values in Python

>>> firstnumber = 9

We call this name-giving “assignment”.

You can reuse a name:

>>> firstnumber = 9999

The earlier value of firstnumber no longer
has that name anymore.

Effectively, firstnumber has changed value.

You can use variable instead of the value they
refer too.

>>> print(9999)
9999
>>> print(firstnumber)
9999

There are restrictions to the names: it can
have letters, numbers, underscore, but cannot
start with a number. No spaces, periods,
brackets, etc., and they cannot be one of the
reserved Python keywords:

and assert in del else raise from if
continue not pass finally while yield
is as break return elif except def
global import for or print lambda
with class try exec

Ramses van Zon Introduction to Programming (SCMP142) November 2024 22 / 135

Different types/classes of values in Python

Integer Number

>>> a = 13
>>> print(type(a))
<class 'int'>

Floating Point Numbers

>>> b = 13.5
>>> print(type(b))
<class 'float'>

Complex Numbers

>>> c = 1+5j
>>> print(type(c))
<class 'complex'>

Strings

>>> d = 'Hello, world!'
>>> print(type(d))
<class 'str'>

Bytes

>>> e = b'Hello, world!'
>>> print(type(e))
<class 'bytes'>

Boolean

>>> f = (1==2)
>>> print(f)
False
>>> print(type(f))
<class 'bool'>

Ramses van Zon Introduction to Programming (SCMP142) November 2024 23 / 135

What can we do with these data types?
With numbers, we can use arithmetic
operators:

+ - * / % // **

E.g.

>>> 4 + 6//2
7

We can use comparison operators:

== != < > <= >=

which result in a boolean, e.g.

>>> 4==1
False
>>> 3<5
True

With booleans, we can do logic operators:

and or not

E.g.

>>> True and False
False
>>> (1==2) or (2==2)
True

With strings, you can concatenate

>>> "Hello" + ", World"
"Hello, World"

and you can use comparisons:

== != < > <= >=

Ramses van Zon Introduction to Programming (SCMP142) November 2024 24 / 135

The print() function

Print is a function that prints its arguments to the terminal.

Examples:

>>> print(100)
100
>>> print("Hello")
Hello
>>> a = 42
>>> print("Hello", "world!", a)
Hello world! 42

You can print several things at once, by listing them in the parentheses to the print function,
separated by commas.

These ‘several things’ are called the arguments of the function.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 25 / 135

The if statement

The following code gives a “Good morning!”
greeting if hour is less than 12.

>>> hour=11
>>> if hour < 12: print("Good morning!")
Good morning
>>> hour=16
>>> if hour < 12: print("Good morning!")
>>>

It does so for two case: hour=11 and hour=16.

if followed by a condition and a colon will
execute what is after the colon if the
condition is met.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 26 / 135

Multi-line input

If we have more than one statement to do when the condition is met:

>>> hour=7
>>> if hour < 12:
... print("Good morning!")
... print("Would you like some coffee?")
...
Good morning
Would you like some coffee?
>>>

How did we enter a multiline piece of Python
code at the >>> prompt?

Well, Python noticed that the statement

if hour < 12: requires more code, so it
enters multi-line mode.

Multi-line mode is indicated by ..., and you
can now continue typing code.

To indicate that your multi-line input has been completed and should

be interpreted and executed, you press Enter on an empty line.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 27 / 135

Code blocks

If we have more than one statement to do when the condition is met:

>>> hour=7
>>> if hour < 12:
... print("Good morning!")
... print("Would you like some coffee?")
...
>>>
Good morning!
Would you like some coffee?
>>>

How does Python know which lines are part of the
statements that are executed upon the condition
being true?

The if statement takes the next

code block.

The start of a code block is indicated by an
indented line.

That code block includes all lines that are
indented in the same way.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 28 / 135

User input with the input() function
With the input function, we can ask the user to type in a value and store it in a variable.

>>> s=input()
...
>>> print(s)
...

You can pass a string to it, which becomes the prompt from that input:

>>> s=input("Give a number: ")
Give a number: ...
>>> print(s)
...

Regardless of the inputted value, the type of value that input() returns is always a string.

You’d have to convert it yourself to a number of that’s what you’d expect, e.g.

>>> s_as_int = int(s)
>>> s_as_float = float(s)

Ramses van Zon Introduction to Programming (SCMP142) November 2024 29 / 135

Scripting

Okay, so we typed in the input() command,
then we typed in a value (say 5), and then
that value was stored in s as a string.

Why did we not just store the value in s
(s=’5’), then?

The idea is that the input could be given by
some other user, but since they’d have to be
sitting right next to us as we are coding, they
could type the s=’5’ statement.

>>> s=input("Give a number: ")
Give a number: ...
>>> print(s)
...

We have arrived at a point where the
interactive session has lost its utility.

We want to create something that will
execute the Python commands elsewhere
without typing them in interactively.

An app, if you wish.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 30 / 135

Script=program=application=app

As far as Python is concerned, they are all the same.

It’s something you can run and which performs a function.

With running, we mean here typing python SCRIPTNAME on the terminal command line (i.e., after
the $ sign), with SCRIPTNAME replaced by the name of your script.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 31 / 135

Creating Python scripts

Creating a Python script is as simple as storing the commands into a text file.

Choose your editor, ensure it can save as ‘plain’ ASCII text. No .doc or .rtf, please.

(E.g., nano, emacs, vi, vim, sublime text, gedit, notepad, . . .)

Make sure you understand where your editor saves your files.
▶ Either save your file in the directory where your terminal is.
▶ Or change directory in the terminal to the directory where you editor saves your files.

Creating, editing, saving a text file differs per system, and is something you will have to be able to
do, so let’s get this working.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 32 / 135

Hands-on #2

Create a first script in a file called ‘first.py’.

In your editor, type:

s=input("Give me a string: ")
print(s)

Save it as ‘first.py’.

Open the terminal (if not open yet).

Go to the directory where you saved ‘first.py’ (if not yet there).

Type, after the prompt, python first.py , i.e.,

$ python first.py

Make sure it works, i.e., it asks for a string, allows you to type one, and then prints it back.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 33 / 135

More about code blocks in Python

Some statements take the next code block

for ...: while ...:
with ...: def ...:
try: except:
class ...: if ...:
elif: else:

These statements all end in a colon (:).

The start of a code block is indicated by an indented line.

That code block includes all lines that are indented in the same way.

That code block ends at a line that has a lesser (really, the previous) indentation.

Code blocks can be nested, increasing the indentation further.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 34 / 135

The else statement

What if the condition is not true, and we need a different set of statements to be executed?

Use “else:”.

>>> hour=7
>>> if hour < 12:
... print("Good morning!")
... print("Would you like some coffee?")
... else:
... print("Good afternoon!")
... print("No more coffee for you!")
...
Good morning!
Would you like some coffee?
>>>

It’s not the afternoon after hour=17!

Right, so let’s fix that with “elif”

>>> hour=19
>>> if hour < 12:
... print("Good morning!")
... print("Would you like some coffee?")
... elif hour < 17:
... print("Good afternoon!")
... print("No more coffee for you!")
... else:
... print("Good night!")
...
Good night!
>>>

Ramses van Zon Introduction to Programming (SCMP142) November 2024 35 / 135

Hands-on #3

Take the if/elif/else code from the previous slide and put it in the script.

But let the script first ask the user to input the hour.

Remember to convert the str that input() returns to an int.

Test the script out by running it and inputting some representative values for hour.

Make it distinguish night, morning, afternoon and evening.

(Let’s just say: Night: 21-24 and 0-5, morning: 6-12, afternoon: 13-17, evening: 18-20)

Test again.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 36 / 135

Errors

Taking input from a user, and then validating it, is a rather big topic on its own that we do not want
to touch.
Nonetheless, your code should to some extent be prepared for thing to go wrong.
E.g., what if s=input() is suppose to give a integer, the code does int(s), but the input isn’t
integer? We get some funny error like:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '45.1'

We will talk about Python’s error messages later, but the users of your script do not wish to decipher
that.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 37 / 135

Error handling

You could check if the string is in fact a
number, as there’s a function for that.

It would look like this:

s=input("Give me an integer: ")
if s.isnumeric():

i=int(s)
print(i)

else:
print("That is not an integer!")

Good, but there may be other things that go
wrong in the input that we did not catch.

An alternative is the ‘try first, deal with
failure later’ model: exceptions.

This take the following form

s=input("Give me an integer: ")
try:

i=int(s)
print(i)

except:
print("That is not an integer!")

You can be more specific in the except on
what kind of error you’re catching, but let’s
not worry about that now.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 38 / 135

Hands-on #4

Create a script that:

Read two strings, call them astr and bstr
Check if a number, if not error, else print the sum of astr and bstr.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 39 / 135

Python’s error messages

Because we cannot foresee every possible error, let’s look at a typical uncaught Python error.

>>> print 17
File "<stdin>", line 1

print 17
ˆ

SyntaxError: Missing parentheses in call to 'print'

Read the lines in the error messages carefully:
1) Something’s up in line 1 in a file “<stdin>”, i.e., the prompt.
2) The statement with the issue is printed, here, it is print 17.
3) The ˆ more precisely pinpoints where there’s an issue
4) The last line is most informative: there should have been

parentheses in the call to ‘print’.
The type of this error is a ’SyntaxError’.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 40 / 135

Python’s error messages
Let’s look at another error message:

>>> print(seventeen)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'seventeen' is not defined

Read the lines in the error messages carefully:
1) What’s a traceback?

When the error occurs in the execution step, several function may be called before the error, and the
traceback would show these.

2) Here, the error occurs in line 1 in a file “<stdin>”, i.e., the prompt, but before a function has been
called, i.e., on the “<module>” level.

3) Again, the last line is most informative: the variable seventeen
has not been defined (yet?).
The type of this error is a ’NameError’.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 41 / 135

Python’s error messages

Here’s another one:

>>> a = 11
>>> b = '17'
>>> c = a + b
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

What was going on here?

Ramses van Zon Introduction to Programming (SCMP142) November 2024 42 / 135

Section 4

Repetitions/Loops

Ramses van Zon Introduction to Programming (SCMP142) November 2024 43 / 135

Try again

In the read-an-int example, it would be nice to start over if the user didn’t enter an integer.

A ‘go to beginning’ statement does not exist in Python (no ’go-to’s in fact), but loops are.

Loops are repetitions of a code block for different, given cases, or until a condition is fulfilled.

So we could ‘loop’ (do the same thing over and over again) until the entered string is an integer.

This would be a while loop.

(The other kind of loop is a for, which we will see later)

Ramses van Zon Introduction to Programming (SCMP142) November 2024 44 / 135

While loop

In the read-an-int example, it would be nice to
start over if the user didn’t enter an integer.
We could ‘loop’ until the entered string is an
integer.

This is one way:

haveint=False
while not haveint:

s=input("Give me an integer: ")
try:
i=int(s)
haveint=True

except:
print("That is not an integer, try again!")

print(i)

At the start of the while loop, haveint is checked, and Python enters the the code block that
belongs to while (the “body of the loop”)

If i=int(s) succeeds, haveint is set to True.

haveint is checked at the next iteration.

Note that print(i) is outside the loop body.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 45 / 135

Escaping the loop

If the expression after while is not true after the loop body is executed, the loop stops.

The loop can also be stopped at any time in the loop body with the break keyword.

In both cases, execution of the script continues with the next non-indented line of code.

So instead of:

haveint=False
while not haveint:

s=input("Give me an integer: ")
try:
i=int(s)
haveint=True

except:
print("That is not an integer, try again!")

print(i)

We could also have used:

while True:
s=input("Give me an integer: ")
try:
i=int(s)
break

except:
print("That is not an integer, try again!")

print(i)

Note: break stops the loop, but not the script. The exit() function can stop a script.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 46 / 135

Hands-on #5

Create a script that:

Reads two strings, call them astr and bstr

Checks if they are numbers, if not, let user know which one is wrong, and let them enter both
numbers again.

If they both contain numbers, print the sum of integer values of astr and bstr and exit.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 47 / 135

Section 5

Functions

Ramses van Zon Introduction to Programming (SCMP142) November 2024 48 / 135

Functions
The solution to the last hands-on problem likely contain repeated code to check whether astr and
bstr are numbers.

Repeated code is bad: can make mistakes in twice as many lines of code.

Functions are bits of reusable code.
(Not the same as mathematical functions, mind you!)

They are created with the def keyword.

Silly example

example_silly.py
def printfruit():

print("apples and oranges")
printfruit()
printfruit()

$ python example_silly.py
apples and oranges
apples and oranges

Ramses van Zon Introduction to Programming (SCMP142) November 2024 49 / 135

Function arguments

If functions did the same thing every time
(like our example), they’d be of little use.

The print function is an example of a
less-trivial function.

Depending on its arguments, the print
function does something else.

When we write our own functions, we can
allow for one or more arguments too.

The function definition must specify the
names of the argument.

example_silly_argument.py
def printfruit(s)

print (s, "apples and oranges")
printfruit("I like")
printfruit("I do not like")

$ python example_silly_argument.py
I like apples and oranges
I do not like apples and oranges

printfruit takes one argument called s.

Inside the function, s acts like a variable.

After the function definition, we can use
printfruit with different arguments.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 50 / 135

More function arguments

We can also have multiple function arguments.

Simply supply multiple names for function arguments, separated by commas.

#example_fun_moreargs.py
def comparable(a,b):

if a != b :
print ('you cannot compare ', a, 'and', b)

else:
print (a, 'and', b, 'are comparable.')

comparable('apples','apples')
comparable('apples','oranges')

$ python example_fun_moreargs.py
apples and apples are comparable
you cannot compare apples and oranges

Ramses van Zon Introduction to Programming (SCMP142) November 2024 51 / 135

Function output
So far our functions took arguments, i.e., input, but they produced output on the terminal.

Functions are more useful if they produce output that can be put in a variable.

To have your function produce such output, use the return statement.

Whatever follows the return statement of a function becomes the function’s return value. The
function exits at the return statement.

To use that return value to a variable, use the function call as if it’s a variable.

Silly example

example_fun_output.py
def addone(x):

return x+1
a=10
b=addone(a)
print(a,b)

$ python example_fun_output.py
10 11
$

Ramses van Zon Introduction to Programming (SCMP142) November 2024 52 / 135

Hands-on #6

Write a function solve that returns the solution of the equation

y = ax + b

given real numbers a, b, and y (in that order).

Hint: The mathematical solution is x = (y − b)/a.

The function should be in a Python script, and at the end of the script, the following test cases
should be performed:

print(solve(1, 3, 4)) should give 1.0.

print(solve(0.2, 0.3, 0.3)) should give 0.0.

print(solve(0.1, 0.3, -0.8)) should give -11.0.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 53 / 135

More on functions

There’s a lot more to be said about functions, the scope of variables, default values, variable number of
arguments, keyword arguments, . . .

But we need to go over some other stuff first.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 54 / 135

Section 6

Composite data types

Ramses van Zon Introduction to Programming (SCMP142) November 2024 55 / 135

Lists

A list is a collection of objects.

We have not talked about objects before, but any data of all the types we have introduced count as
objects: integers, strings, floats.

We create a list by putting objects between square parentheses [], separated by commas, e.g.,

>>> lst = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 'blast off!']

List elements do not all have to be the same type.

Lists are objects, so list elements can be lists themselves.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 56 / 135

What can we do with these lists?

We can access elements using the notation LISTNAME[INDEX].

E.g.:

>>> lst = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 'blast off!']
>>> print(lst[0])
10
>>> print(lst[10])
blast off!

Note that the first element has index 0.

(You can think of the index as an offset from the beginning of the list.)

We can reassign elements of the list, too:

>>> lst[10] = 'abort'
>>> print(lst)
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 'abort']

Ramses van Zon Introduction to Programming (SCMP142) November 2024 57 / 135

What can we do with these lists?
You can add an element to the end with append method:

>>> lst.append('not ready')
>>> print(lst)
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 'abort', 'not ready']

You can remove an element by index with the pop method:

>>> lst.pop(2)
8
>>> print(lst)
[10, 9, 7, 6, 5, 4, 3, 2, 1, 'abort', 'not ready']

Note that the removed element is returned by pop.
(del lst[2] would also have worked, but would not have returned removed element).

The current length of the list is obtained from the len function.

>>> print(len(lst))
11

Ramses van Zon Introduction to Programming (SCMP142) November 2024 58 / 135

What are these “Methods”?

Regular functions take arguments in parentheses
and return something:

>>> x = f(y,z)

Methods are functions whose first argument is
placed in front of the function name:

>>> x = y.f(z)

Of course, it was just a syntax variation, that would be rather silly.

What “y.f(z)” indicates is that the method f is part of y.

So y must be an object that has f as a method.

Different object types can have their own f method that is appropriate for that data type.

Data and functions acting on that data are thus combined; that is one of the characteristics of
“object oriented programming”.

One can find the methods of a variable x with “dir(x)”.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 59 / 135

Hands-on #7

Create a list with one element, ‘7’.

Add the following elements:
▶ 17.5
▶ -1
▶ Hello, world.

Remove the third element.

Print the list

Ramses van Zon Introduction to Programming (SCMP142) November 2024 60 / 135

Loops with lists

It is rather common to have to go over a list and do something with every element.

This is a repetition, i.e., a loop.

We could write

i = 0
while i<len(lst):

x=lst[i]
do_something_with(x)
i=i+1

But Python can do that with a for loop:

for x in lst:
do_something_with(x)

Ramses van Zon Introduction to Programming (SCMP142) November 2024 61 / 135

Hands-on #8

Write a script that:

Let the user input a string.
If it is a number, put it in a list called lst.

Let the user input further strings.
If it is a number, append it to the list lst.
If it is the string ‘exit’, stop asking for user input.

Before stopping, print all the numbers and their average.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 62 / 135

Other handy list manipulations

If somelist is a list, then you can use:

somelist.index(value): Find the index of value in somelist.
somelist.count(value): Count number of occurrences of value in somelist.
somelist.extend(otherlist): Append all elements of othersomelist.
somelist.insert(index,object): Insert object in list at position index.
somelist.remove(value): Remove the first element that is equal to value in somelist.
somelist.copy(): Create a copy of somelist.
somelist.clear(): Remove all elements from somelist.
somelist.reverse(): Reverse the somelist.
element in list: Check if element is in somelist.
somelist.sort(): Put somelist in sorted order.
sorted(somelist): Create a sorted version of somelist.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 63 / 135

List-like data types

Sets: are lists in which an element can only
occur once.

Elements in a set an unordered (so no
indexing).

Sets are defined with curly braces:

>>> s = {5, 4, 6, 5}
>>> print(s)
{4, 5, 6}

Tuples: are lists that cannot be changed.

Tuples are denoted with parentheses.

>>> t = (1,2,1)
>>> print(t)
(1, 2, 1)

Generators: are lists generate their next
element upon request.

>>> r = range(4)
>>> print(r)
range(0, 4)
>>> for x in r:
... print(x)
...
0
1
2
3

Dictionaries: are key-value hash tables.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 64 / 135

Dictionaries

Key? Value? Hash? Table?

In Python, a dictionaries (dict for short) is a
look-up table.
Think of the directory of a building:

This would need to allow look-up for ‘Airbnb’,
‘SciNet’, . . .

And give the suite number when selected.

In Python:

>>> directory={'Airbnb': 10, 'SciNet': 1140}
>>> print(directory['SciNet'])
1140

Ramses van Zon Introduction to Programming (SCMP142) November 2024 65 / 135

Dictionaries

>>> directory={'Airbnb': 10, 'SciNet': 1140}
>>> print(directory['SciNet'])
1140

A dict translates a ‘key’ to its associated ‘value’.

In the above example, the keys are ‘Airbnb’ and ‘SciNet’, and the values are 10 and 1140.

You can give the key in square brackets to get the value out (a bit like a list).

Keys must be unique, but can be integers, strings, . . .

Values can be anything.

Other names for these structures:

Associate Array, Map, Hash Map, Unordered Map

Ramses van Zon Introduction to Programming (SCMP142) November 2024 66 / 135

What can we do with these dicts?
Look up values:

>>> directory['SciNet']
1140

Get all the keys:

>>> directory.keys()
dict_keys(['SciNet', 'Airbnb'])

Get all the values:

>>> directory.values()
dict_values([1140, 10])

Add key-value pair:

>>> directory['TTC'] = 0

Loop over all keys

>>> for k in directory:
... print(k)
...
SciNet
Airbnb
TTC

Loop over key-value pairs

>>> for k,v in directory.items():
... print (k,v)
...
SciNet 1140
Airbnb 10
TTC 0

Ramses van Zon Introduction to Programming (SCMP142) November 2024 67 / 135

Hands-on #9

This is the price list of some groceries:

potatoes: $3 / lbs
squash: $5 / lbs
onion: $1 / lbs
corn: $2 / lbs
cabbage: $5 / lbs

You have got a shopping list:

2 lbs potatoes
1 lbs onion
0.5 lbs cabbage

Write a script that stores the price list and the shopping list in dicts.

Make it compute the total amount to pay the cashier.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 68 / 135

List comprehension

List comprehensions are a short hand way of creating lists.

They combine a for loop, appends, and if statements.

Example: list of all squares that are divisible by 4 and are less than 100.

without list comprehensions:

squarelist=[]
for i in range(100):

i2 = i**2
if i2%4 == 0:

squarelist.append(i2)

with list comprehensions:

squarelist=[i**2 for i in range(100) if i**2 % 4 == 0]

General syntax:

[<EXPRESSION> for <VARIABLE> in <LIST-LIKE> if <CONDITION>]

The if is optional, e.g. [i**2 for i in range(4)] gives [0,1,4,9].

Ramses van Zon Introduction to Programming (SCMP142) November 2024 69 / 135

Section 7

Documentation and comments

Ramses van Zon Introduction to Programming (SCMP142) November 2024 70 / 135

Code is for humans

So far, we have been writing code for the computer.
(We tried to make the computer do something.)

Programs are meant to be read by humans and
only incidentally for computers to execute.
(Harold Abelson, Structure and Interpretation of Computer Programs)

How so?
▶ Programmers spend more time reading someone else’s code than writing their own.
▶ There’s no such this as a one-off script.

(If you have saved a script as a file, it’s no longer one-off, and you or someone else will eventually use it
again and want to adapt it.)

Readability, documentation, and maintainability very important.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 71 / 135

How do you code for humans?

1 Write clear code.
2 Comment your code.
3 Document your code.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 72 / 135

1. Write clear code: general principles
KISS: Keep It Simple, Stupid!

▶ Do not write code that is more complicated than necessary.
▶ It will take too long for the next programmer of your future self to decode.
▶ Your cleverest code will need someone cleverer than you to debug.

DRY: Don’t repeat yourself.

Use functions to extract repeated code.
⇒ Less code to figure out, less possible bugs, less code to maintain.

Separation of concerns

Each function should do only one thing, and do it well.

This makes it easier to figure out, bugs become less complex,
documentation becomes easier to write, and code can be reused
in more situations (DRY).

Ramses van Zon Introduction to Programming (SCMP142) November 2024 73 / 135

1. Write clear code: style matters

A couple of code style guidelines can help too:

Clear variable and function names
b → calls_per_postal_code
One statement per line
Use a consistent style
Prefer small functions over long ones (as long as they perform a non-trivial task).
Don’t reinvent the wheel; use existing functions and packages.
No cleverness.
Use comments and documentation

Ramses van Zon Introduction to Programming (SCMP142) November 2024 74 / 135

2. Comment your code

Comments start with #; anything after that is
a comment.

amount_flour = 2.2 # amount in pounds
brand = 'Brand #1' # string contains '#'

Keep comments succinct.

Describe why your the code is doing
something.

a_is_prime = all(a%i for i in range(2,a))
brute force determination of whether
a is prime (was easier to code than
a more sophisticated algorithm).

Describe on a high level what parts of the
code are doing.

Get to user input an integer
while True:

try:
input_string = input("Enter an integer a=")
a = int(input_string)
break

except:
print("Not an integer; try again")

Determine if integer a is prime
a_is_prime = all(a%i for i in range(2,a))

brute force determination of whether
a is prime (was easier to code than
a more sophisticated algorithm).

Report back result to screen
print("a is prime?", a_is_prime)

Ramses van Zon Introduction to Programming (SCMP142) November 2024 75 / 135

3. Document your code

You would also add comments describing
what a function does, what parameters they
take, and what they return.
This would be the first line of defence in
documenting that function.

However, Python has a separate mechanism
for such function documentation, called a
docstring.

Doc-strings are placed at the first line of the
function.

The docstring is returned by the help
function.

>>> help(find_second)

>>> def find_second(searchin, forthis):
... """Finds the 2nd occurance of a string.
...
... Args:
... searchin (str): string to search in.
... forthis (str): string to search for.
...
... Returns:
... int: The index in the search where the
... second occurance starts.
... -1 if there is no 2nd occurance.
... """
... # code would follow
...

The triple quotes are the Python syntax for
multi-line strings.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 76 / 135

How to code for humans, continued

1 Write clear code
2 Comment your code
3 Document your code

Some schools of thought say that #2 and #3 are unnecessary if you write “self-documenting code”.

Humbug!

Points #2 and #3 can be done simultaneously with Python only up to a point.

For more complex code, you will need to write files like README, doc.txt, manual.pdf . . .

Ramses van Zon Introduction to Programming (SCMP142) November 2024 77 / 135

Section 8

Intermezzo: Shebangs and PATH

Ramses van Zon Introduction to Programming (SCMP142) November 2024 78 / 135

Shebang comment
Under Linux and MacOS, one often sees Python scripts that start with a “shebang” line:

#!/usr/bin/python

or (much better)

#!/usr/bin/env python3

Such a first line tells the operating system that this is a Python script.
Being identified as a Python script, it can be executed from the terminal command line:

$./mypythonscript.py

instead of

$ python mypythonscript.py

For this to work, you might need to tell the OS additionally that this file may be executed:

$ chmod +x mypythonscript.py

Ramses van Zon Introduction to Programming (SCMP142) November 2024 79 / 135

Intermezzo: PATH

On Linux or Mac, PATH is an environment variable containing a list of directories, separated by
colons (“:”).

$ echo $PATH
/x/opt/base/python/3.11.5/bin:/x/core/bin:
/usr/local/bin:/usr/bin:/bin:/home/rzon/bin

“echo” is how you print on the command line
“$” + a name is how you access a variable

The PATH specifies the directories where the system should look for executable files when you run a
command on the command line.

You can modify the PATH variable temporarily in the current shell session:

$ PATH="$PATH:."
$ mypythonscript.py

“.” stands for current directory
There are no spaces around ‘=’
Keeps the previous path using $PATH

To make this permanent, you must add this to a shell configuration files, like ~/.bashrc or ~/.zshrc.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 80 / 135

Section 9

Modules

Ramses van Zon Introduction to Programming (SCMP142) November 2024 81 / 135

What are modules and packages?
Modules are Python files.

Modules are meant to be imported into other Python files or scripts.

Convenient way to store functions that you might use in multiple projects.

Packages are modules that are packaged for distribution and installation.

Example

Module file:

file: yearprop.py
"""Deal with properties of calendar years."""
def is_leap_year(year):

"""Determines if a give year is a leap year.
Argument year is the year to investigate.
Returns True is year is a leap year, else
False.
"""
...

Usage in another script:

file: yearquery.py
"""Ask for years and say if they're leap years"""
import yearprop

use the function yearprop.is_leap_year
year = int(input("Give a year"))
if yearprop.is_leap_year(year):

print(year,"is a leap year")
else:

print(year,"is not a leap year")

Ramses van Zon Introduction to Programming (SCMP142) November 2024 82 / 135

Module example expanded

Module file:

file: yearprop.py

"""Deal with properties of calendar years."""

def is_leap_year(year):
"""Determines if a give year is a leap year.
Argument year is the year to investigate.
Returns True is year is a leap year, else
False.
"""

if year%400 == 0:
return True

elif year%100 == 0:
return False

elif year%4 ==0:
return True

else:
return False

Usage in another script:

file: yearquery.py
"""Ask for years and say if they're leap years"""

import yearprop

while True: # keep processing new input
keep asking input until we get an integer
while True:

try:
year = int(input("Year (0 to stop)? "))
break

except:
print("That is not an integer.")

process input
if yearprop.is_leap_year(year):

print(year, "is a leap year!")
else:

print(year, "is not a leap year.")
if year==0: break # stop processing input

print("Done")

Ramses van Zon Introduction to Programming (SCMP142) November 2024 83 / 135

Modules - Details

We do not have to specify .py in the import statement.

The file name without .py is the name of the module.

The module file has to be in the same directory as the script, unless you install it (later)

When putting functions in a module and importing that module, it gets put in the namespace of the
modules. The name of the namespace is the name of the module.

(in the example, the namespace was yearprop)

You can change the namespace that the modules functions end up in

Changing the name of the module: import yearprop as yp
Importing specific functions: from yearprop import is_leap_year
Importing everything: from yearprop *

Ramses van Zon Introduction to Programming (SCMP142) November 2024 84 / 135

Hands-on #10

Type out the codes from slide 81, store them in files yearprop.py and yearquery.py

Make sure they work on the terminal command line, i.e.

$ python yearquery.py
Year (0 to stop)? 1972
1972 is a leap year!
Year (0 to stop)? 2020
2020 is a leap year!
Year (0 to stop)? 2023
2023 is not a leap year.
Year (0 to stop)? 0
Done

We will use this code later again.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 85 / 135

Standard Packages

There are many, many, many standard packages.

We will only get to look at a few very basic ones:
▶ sys: system specific parameters and functions (command line arguments, exit, path, . . .)
▶ os: operating system stuff (chdir, stat, getenv, listdir, walk, . . .)
▶ shutils: High level file operations (copyfile, copytree, rmtree, move, . . .)

For more standard packages, see https://docs.python.org/3/library/index.html

In addition, there are non-standard packages in the pypi repository (https://pypi.org), that you can
install with the pip command on the terminal command line (not within Python).

These modules are put in a special location that Python knows about, so they do not have to reside
in the directory of your script.

You can control those locations by using Virtual Environments.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 86 / 135

https://docs.python.org/3/library/index.html
https://pypi.org

Section 10

Virtual Environments

Ramses van Zon Introduction to Programming (SCMP142) November 2024 87 / 135

Virtual environments solve a number of problems

Many python installations are owned by the system, so you cannot install packages

Or if you try, it will only work for you.

And you cannot have different several projects with different package requirements.

Because many python packages conflict with one another, and you cannot have different versions of
the same package installed at the same time.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 88 / 135

Virtual environments solve a number of problems

How?

Create a virtual environment directory with a local python “installation” based off of your main
python installation.

When the environment is activated, PATH is set so that python and pip is used and packages get
installed in that directory.

When you deactivate the environment, you have the old python back.

And then you can create and activate more environments.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 89 / 135

How, exactly?
Create an environment

$ python -m venv DIRNAME

Activate an environment

$ source DIRNAME/bin/activate
(on Windows, use Scripts instead of bin)

Install packages

(DIRNAME)$ pip install PACKAGENAME

Deactivate the environment

$ deactivate

Try this at home:
1 Create a virtual environment called “bio”.
2 Activate it.
3 Install the biopython package.
4 Start python, then import Bio, then

help(Bio).
5 Deactivate the environment.
6 Repeat step 4, which should fail.
7 Reactivate the environment.
8 Repeat step 4, which should succeed.

Conda environments? are similar, but a bit powerful yet more invasive and conda has licensing ussues.
Ramses van Zon Introduction to Programming (SCMP142) November 2024 90 / 135

Section 11

Other Methods for Input in Python

Ramses van Zon Introduction to Programming (SCMP142) November 2024 91 / 135

Input in Python

The input function is what we have used for user input so far.

The user needed to type something in.

That’s not very automated!

Let’s look at two more common ways of providing input to a Python script that lend themselves better to
automation:

1 Command line arguments
2 Files

Ramses van Zon Introduction to Programming (SCMP142) November 2024 92 / 135

Section 12

Command-line arguments

Ramses van Zon Introduction to Programming (SCMP142) November 2024 93 / 135

What are Command-line arguments?

The terminal command line execution of Python scripts, e.g.

$ python yearquery.py

can be augmented with arguments on the command line

$ python yearquery.py 1972 2000 2017

But this will not ‘just work’. The script will need to be expecting command line arguments and deal with
them.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 94 / 135

Command-line arguments: sys.argv

A script needs to expect command line arguments and deal with them, or those arguments will be
ignored.

The standard sys module contains a variable called argv which is a list of all command line
arguments, called argv.

To use it, import the sys module and use sys.argv as a list.

E.g.

file: sys_argv_example.py
import sys
print("You gave",len(sys.argv),"arguments")
for arg in sys.argv:

print(arg)

Ramses van Zon Introduction to Programming (SCMP142) November 2024 95 / 135

Hands-on #12

Take the Python codes from hands-on #10

Rewrite yearquery.py to use, instead of the input from input(), the sys.argv list.

The module file yearprop.py should not have to be changed for this.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 96 / 135

Section 13

File system and I/O

Ramses van Zon Introduction to Programming (SCMP142) November 2024 97 / 135

File System: Concepts

-< <-

Files contain your data
Files organized in directories/folders
A directory is a file too
Path: sequence of folders to get to a file

Tree:

Files:

FOLDER1/WORLD.TXT
FOLDER2/NOTE.TXT
FOLDER1/HELLO/...

Ramses van Zon Introduction to Programming (SCMP142) November 2024 98 / 135

Computer Data Storage

Media:

Memory
Disks
Flash (USB)

DVD
Tape
. . .

All media are essentially linear sequence of bits:

In and of itself, this is useless. What do these bits mean?

Ramses van Zon Introduction to Programming (SCMP142) November 2024 99 / 135

File systems

Many non-volatile media use a file system

A file system is a way to give meaning to the sequence of bytes.

This entails storing data describing the meaning of the data: metadata

Ramses van Zon Introduction to Programming (SCMP142) November 2024 100 / 135

Files

Storage media is often subdivided into files

Files have a name, a size and possibly other metadata

Let’s say that the metadata for the files is stored at the beginning of the storage media, e.g.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 101 / 135

Metadata

Describes file properties:

File name

Within the file system: location on disk, size,
etc.

File type

(extensions/magic identifiers)

Owner, group

Creation, access and modification times

Read/write permissions

(user, group, world, other access control)

Ramses van Zon Introduction to Programming (SCMP142) November 2024 102 / 135

Directories or Folders

So we have files now, but this can get unorganized quickly.
Imagine looking for the file ‘NOTE.TXT’ in a list of 10,000,000 files.

Directories

Like special files that contain a list of (metadata for) other files.
A directory can contain other directories, leading to a tree.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 103 / 135

I/O Operations

What really happens if we open a file, write to it, etc.?

Opening a file:
1 Find the file in the directory

Or create a new entry in the directory
2 Check permissions on the file
3 Find the location of the file on disk
4 Initialize a file ‘handle’ and file ‘pointer’

Ramses van Zon Introduction to Programming (SCMP142) November 2024 104 / 135

I/O Operations

What really happens if we open a file, write to it, etc.?

Writing to a file:
1 Convert data to a stream of bytes.
2 Put those bytes in a buffer.
3 Update file pointer.
4 If buffer full: write to file

Ramses van Zon Introduction to Programming (SCMP142) November 2024 105 / 135

I/O Operations

What really happens if we open a file, write to it, etc.?

Reading from a file:
1 If data not in buffer: read data into a buffer
2 Read bytes from buffer into variable, performing any needed conversion.
3 Update file pointer.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 106 / 135

I/O Operations

What really happens if we open a file, write to it, etc.?

Closing a file:
1 Ensure buffers are flushed to disk
2 Update any metadata.
3 Release buffers associated with the file handle.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 107 / 135

The Goal of the Game is Minimizing IOPS

Disk I/O is usually the slowest part of a pipe line.

If manipulating data from files is most of what you do, try and minimize IOPS.
Bad

Writing out a byte-by-byte, reopening the file each
time

s = 'Hi world\n'
for c in s:

f = open('hiworld.txt','a')
f.write(c)
f.close()

Good

Writing out a string in one fell swoop.

s = 'Hi world\n'

f = open('hiworld.txt','w')
f.write(s)
f.close()

Work in memory and reuse data if you can.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 108 / 135

What’s in a file?

Text:

Seems attractive: you can just read it.
Must assign a bit pattern to each letter or symbol.
For numerical data, representation in base 10 must be computed.

Binary:

Usually: use same byte-representation on disk as the computer.
Can suffer from portability.
Some binary formats include info on the data, e.g.: hdf5 and NetCDF.

Encoded:

Various non-native, binary looking formats, e.g. pickle.
Might be used to store non-trivial data structures.
Example: Python’s pickle (later).

Ramses van Zon Introduction to Programming (SCMP142) November 2024 109 / 135

Text format

ASCII Encoding: 7 bits = character

128 possible, but only 95 printable characters

Uses 8-bit bytes: storage efficiency 82% at
best.

ASCII representation of floating point
numbers:

▶ Needs about 18 bytes vs 8 bytes in binary:
inefficient

▶ Representation must be computed: slow
▶ Non-exact representation

ASCII

integers characters
32 (space)
33-47 !"#$%&'()*+,-./
48-57 0-9
58-64 :;<=>?@
65-90 A-Z
91-96 [\]ˆ_
97-122 a-z
123-126 {|}~

Ramses van Zon Introduction to Programming (SCMP142) November 2024 110 / 135

Text Encodings

ASCII: 7 bit encoding. For English.
Latin-1: 8 bit encoding. For western European Languages mostly.
UTF-8: Variable-width encoding that can represent every character in the Unicode character set.

Unicode: standard containing more than 110,000 characters.

You can tell Python what encoding your scripts are in as follows:

-*- coding: utf-8 -*-
s = "Comment ça va?"
print(s)

Though, in fact , the default encoding in Python 3 is utf-8.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 111 / 135

Binary Output

Output the numbers as they are stored in
memory

Why bother? Fast and space-efficient.

Writing 128M doubles:

ASCII 173 s
binary 6 s

Not human readable.

But is that really so bad? If you have 100 million numbers in a file, are you going to read them all?

Ramses van Zon Introduction to Programming (SCMP142) November 2024 112 / 135

Some best practices concerning I/O

If your data is not text, do not save it as text.

Choose a binary format that is portable.

Minimize IOPS: write/read big chunks at a time, don’t seek more than needed, try to reuse data or
load more in memory.

Don’t create millions of files: unworkable and slows down directories.

Stick to letters, numbers, underscores and periods in file names.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 113 / 135

Python modules/packages for files

built-in Python file objects

os, os.path

shutil

pickle, shelve, json

zipfile, tarfile, . . .

csv, numpy, scipy.io.netcdf, pytables, . . .

Ramses van Zon Introduction to Programming (SCMP142) November 2024 114 / 135

Section 14

Directories and Files Basics

Ramses van Zon Introduction to Programming (SCMP142) November 2024 115 / 135

Directories
List:

>>> import os
>>> os.listdir(".")
['FOLDER1', 'abc.txt', 'FOLDER2']

>>> [f for f in os.listdir() if os.path.isdir(f)]
['FOLDER1','FOLDER2']

Create:

>>> os.mkdir('FOLDER')

Change current directory:

>>> os.chdir('FOLDER')
>>> os.chdir('..')

Where am I?

>>> os.chdir('FOLDER')
>>> print(os.getcwd())
C:\Users\rzon\FOLDER

On Linux, this would say something like /home/rzon/FOLDER.
Ramses van Zon Introduction to Programming (SCMP142) November 2024 116 / 135

Backslash or forward slash?

Linux and Mac prefer the (forward) slash / to separate directories.

MS Windows prefers backslash for the same purpose. It also separates file trees by file volume (C:,
D:, . . .).

What to do if you want to write cross-platform code?
1 MS Windows will accept the forward slash as well, except on the command-line, so you could use

that in Python code.
2 You can also use os.sep which is set to the operating system’s preferred choice.
3 You can assemble and disassemble paths using os.path.join and os.path.split.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 117 / 135

Write to a text file

Writing

>>> import os
>>> f = open(os.path.join('FOLDER','WORLD.TXT'),'w')
>>> s = "Hello"
>>> print(s,file=f)
>>> f.close()

Appending

>>> import os
>>> f = open(os.path.join('FOLDER','WORLD.TXT'),'a')
>>> s = "world"
>>> print(s,file=f)
>>> f.close()

Ramses van Zon Introduction to Programming (SCMP142) November 2024 118 / 135

Read a text file

Read the whole file

>>> import os
>>> f = open(os.path.join('FOLDER','WORLD.TXT'),'r')
>>> s = f.read()
>>> print(s)
Hello
world
>>> f.close()

Read the whole file by lines

>>> import os
>>> f = open(os.path.join('FOLDER','WORLD.TXT'),'r')
>>> s = f.readlines()
>>> print(s)
['Hello','world']
>>> f.close()

Ramses van Zon Introduction to Programming (SCMP142) November 2024 119 / 135

Read a text file
Read one line at a time

>>> import os
>>> f = open(os.path.join('FOLDER','WORLD.TXT'),'r')
>>> s = f.readline()
>>> print(s)
Hello
>>> s = f.readline()
>>> print(s)
world
>>> f.close()

Read/Write

>>> import os
>>> f = open(os.path.join('FOLDER','WORLD.TXT'),'r+')
>>> f.seek(1)
>>> print('i ', file=f)
>>> f.seek(0)
>>> s = f.readline()
>>> print(s)
Hi lo
>>> f.close()

Ramses van Zon Introduction to Programming (SCMP142) November 2024 120 / 135

Hands-on #13

Write a Python script that write the numbers 1972, 2000, and 2017 on separate lines to a file called
years.dat.

Take the yearprop.py from hands-on #10 (see course website).

Create a script yearqueryfromfile.py to read in the years from the years.dat file and report if
they are leap years using the (unmodified) yearprop module.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 121 / 135

Glob

The glob package does only one thing: it finds all files or paths matching a specific Unix-style regular
expression pattern, and returns them in a list.

>>> import glob
>>> f = glob.glob('*/*.TXT')
>>> print(f)
['FOLDER\\NOTE.TXT', 'FOLDER\\WORLD.TXT']
>>>

Ramses van Zon Introduction to Programming (SCMP142) November 2024 122 / 135

os.path

There are a number of useful file and directory-testing functions in os.path.

>>> print(f)
['FOLDER/NOTE.TXT', 'FOLDER/WORLD.TXT']
>>> import os
>>> print(os.path.isfile(f[0]))
True
>>> print(os.path.isdir(f[1]))
False
>>> print(os.path.abspath(f[1]))
'C:\Users\rzon\FOLDER\WORLD.TXT'
>>> print(os.path.expanduser('~'))
'C:\Users\rzon'

If you’re looking for a directory-testing function, it’s likely in os.path.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 123 / 135

Example: Copy files

Text file

>>> f = open("file1.txt","r")
>>> g = open("file2.txt","w")
>>> for line in f:
>>> g.write(line)
>>> f.close()
>>> g.close()

Binary file

>>> f = open("file1.bin","rb")
>>> g = open("file2.bin","wb")
>>> chunk = f.read()
>>> g.write(chunk)
>>> f.close()
>>> g.close()

Ramses van Zon Introduction to Programming (SCMP142) November 2024 124 / 135

shutil file/directory management

Do we really have to open a file read it line by line, write it, and close the file just to copy a file in
Python?

In the command shell, you’d do that with a simple cp or copy command.

In Python, you get shell-like functionality from the shutil package.

>>> import shutil
>>> shutil.copyfile('file1.txt','file2.txt')

Ramses van Zon Introduction to Programming (SCMP142) November 2024 125 / 135

Main shutil functions
copyfile
Copy content of one file to another file.

copymode
Copy permissions of a file or directory to another.

copystat
Copy permissions and time-stamps of a file or directory to another.

copy, copy2
Copy content and permissions (and time-stamps, for copy2).

move
Move a file or directory to another place in the file tree.

copytree
Recursively copy a directory.

rmtree
Recursively remove a directory.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 126 / 135

Output formats: Pickle

Base64 encoding using readable ASCII

Portable for the same version of Python.

In the pickle module.

Flexible, can serialize any structure.

>>> import pickle,os,numpy
>>> a = numpy.zeros((1000,1000))
>>> f = open('a.pickle','wb')
>>> pickle.dump(a,f)
>>> f.close()
>>> print(os.path.getsize('a.pickle'))
32000196
>>> g = open('a.pickle','rb')
>>> b = pickle.load(g)
>>> g.close()

Ramses van Zon Introduction to Programming (SCMP142) November 2024 127 / 135

Output formats: Shelve

You can pickle multiple variables in one file, but you must retrieve them sequentially.

shelve allows to store multiple variables in one file, indexed by name, so you can retrieve just the
variable you want.

>>> import shelve,numpy
>>> a = numpy.zeros((1000,1000))
>>> b = {'b':'bb','c':'cc'}
>>> f = shelve.open('b_and_c')
>>> f['a'] = a
>>> f['b'] = b
>>> f.close()
>>> g = shelve.open('b_and_c')
>>> readb = g['b']
>>> g.close()
>>> print(readb['b'])
'bb'

Ramses van Zon Introduction to Programming (SCMP142) November 2024 128 / 135

Output formats: CSV Format

Comma Separated Values

Common format for import/export

Human readable

Sample csv file (data.csv):

3,4,5
4,3,2
5,6,7

Reading using the csv module

>>> import csv
>>> f = open('data.csv','r')
>>> s = csv.reader(f)
>>> a = [row for row in s]
>>> print(a)
[['3', '4', '5'], ['4', '3', '2'],
['5', '6', '7']]

. . . and the numpy module

>>> import numpy as np
>>> a = np.genfromtxt('data.csv',
... delimiter=',')
>>> print(a)
[[3. 4. 5.]
[4. 3. 2.]
[5. 6. 7.]]

Ramses van Zon Introduction to Programming (SCMP142) November 2024 129 / 135

Output formats: Json

JSON (JavaScript Object Notation) is a lightweight data-interchange format

Human readable

Reading

>>> import json
>>> f = open("data.json","r")
>>> b = json.load(f)
>>> f.close()
>>> print(b)
[[3, 4, 5], [4, 3, 2]]

data.json

[[3,4,5],
[4,3,2]]

Writing

>>> import json
>>> f = open("newdata.json","w")
>>> b = [[3, 4, 5], [4, 3, 2]]
>>> json.dump(b,f)
>>> f.close()

newdata.json

[[3.4.5], [4,3,2]]

Ramses van Zon Introduction to Programming (SCMP142) November 2024 130 / 135

Hands-on #14

Download the ‘bunchofiles.zip’ file from https://scinet.courses/1305.

Unzip it in a directory on your computer.

Now create Python script that:
1 Finds all files with an extension .csv in that directory.
2 The script should move those .csv files to a new subdirectory called ‘csv_files’.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 131 / 135

https://scinet.courses/1305

Section 15

Conclusion

Ramses van Zon Introduction to Programming (SCMP142) November 2024 132 / 135

What have we learned?

A program is a set of instructions to tell a computer how to automate a task.

Programming is the activity of writing such programs.

Programming instructions in Python:
▶ Variables
▶ Data types: basic ones as well as lists and dicts
▶ Conditionals
▶ Loops
▶ Functions
▶ Modules
▶ Keyboard input and screen output
▶ Virtual environments
▶ Command line arguments
▶ Input and output using files
▶ Error handling

Ramses van Zon Introduction to Programming (SCMP142) November 2024 133 / 135

Programming Best Practices

Practices we covered in this minicourse

Write code for humans
Modular programming
Using libraries
Comment and document code
Minimize I/O operations

Other good practices to get acquainted with

Avoid global variables
Version control (e.g. git)
Defensive programming
Integrated and unit testing
Performance tuning (Python is slow compared to compiled languages).

Ramses van Zon Introduction to Programming (SCMP142) November 2024 134 / 135

Further Learning Resources

https://www.learnpython.org

Goes from basic to advanced.

https://www.w3resource.com/python-exercises

Has hundreds of exercises to hone your Python coding skills.

Ramses van Zon Introduction to Programming (SCMP142) November 2024 135 / 135

https://www.learnpython.org
https://www.w3resource.com/python-exercises

	Introduction
	What does Python really do?
	Basic elements of the Python language
	Repetitions/Loops
	Functions
	Composite data types
	Documentation and comments
	Intermezzo: Shebangs and PATH
	Modules
	Virtual Environments
	Other Methods for Input in Python
	Command-line arguments
	File system and I/O
	Directories and Files Basics
	Conclusion

