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Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1332

Click on the link for the class, and look under ”Lectures”, click on ”Introduction”.
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About this class, SciNet’s SCMP151

The purpose of this course is to introduce you to the basics quantum computing. Some notes
about the class:

• We’ll meet July 8-12, from 12:00-3:00pm.

• All classes will be recorded, and the lecture material made available.

• We will be using a workshop format. We will have both lectures and hands-on
components.

• Participation will be determined by submitting the hands-on assignments.

• This class qualifies for 15 credits toward a SciNet Scientific Computing Certificate.

Note that this is a SciNet class. It is not an official University of Toronto class. If you ever
have questions, please email

courses@scinet.utoronto.ca
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About this class, continued

We’ll be doing programming of quantum computing circuits in this class.

• I’ll be using Python 3.10.X. Python 3.8 or 3.9 will also likely work.

• I won’t be teaching Python syntax explicitly, unless asked. Don’t be afraid to ask if you
see something you don’t understand!

• We’ll be using the PennyLane quantum computing package, version 0.36.0. This is
installed using pip. There have been some reports of it not installing properly with
Python 3.7.

• We’ll be assuming a knowledge of linear algebra, probability and some statistics.
Knowledge of quantum mechanics won’t hurt.

The first class will largely cover the fundamentals. The remaining four classes will discuss
algorithms and applications. Ask questions!
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Today’s class

Today’s class will cover the following topics:

• Introduction to quantum computing, in general.

• Qubits, operators on qubits.

• Quantum circuits.

• PennyLane, programming quantum circuits.

• Multi-qubit systems.

• Entanglement.

• Teleportation.

• Different hardware approaches.

Please ask questions if something isn’t clear.
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Quantum computing?

What is quantum computing, as opposed to ”classical” computing?

• Regular computers use bits to represent information. These are transistors, or other
components, that take on a binary state, a state which represents a value of 1 or 0.

• Quantum computers also use bits to represent information. These are known as ”qubits”,
and can also take a value of 1 or 0.

• These states (”kets”) can be thought of as column vectors.

|0〉 =
[
1
0

]
|1〉 =

[
0
1

]
• Unlike regular bits, qubits can exist in a superposition of states, which is a linear

combination of the |1〉 and |0〉 states.

|ψ〉 = α |0〉+ β |1〉
Where α and β are complex, in general.
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Properties of qubits

Qubits form the basis of quantum computing. They are taken to have specific properties.

• All states, |0〉 for example, have an associated conjugate transpose vector 〈0| = [1 0].
These are known as ”bras”.

• All states are taken to be normalized 〈ψ|ψ〉 = 1.

• Because |0〉 and |1〉 are orthogonal (〈0|1〉 = 0) they form a basis set. This is known as
the ”computational basis”, and is the most commonly used basis in quantum computing.

• Note that we take the complex conjugate of a state when building the complex transpose

〈ψ|ψ〉 = α∗α+ β∗β = |α|2 + |β|2 = 1

• The α and β values correspond to the probability amplitudes of |ψ〉 being measured in
either state |0〉 or |1〉.

The power of a quantum computer is in the fact that a quantum state is a superposition
of its basis states.
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Measurement

Because we are dealing with quantum states we are naturally dealing with probabilities.

• The final operation of a quantum circuit is a measurement of some or all of the qubits.

• However, we will measure qubits to be in specific states with only a certain probability, as
given by the probability amplitudes of the states.

• As such, we must rerun the calculation many times to determine the probabilities
associated with each state.

If |ψ〉 = α |0〉+ β |1〉 then the probability of measuring

• the state |0〉 is |α|2 and

• the state |1〉 is |β|2.

The probabilities are often represented as 〈0|ψ〉, since they correspond to the magnitude of
the projection of the state |ψ〉 onto the basis 〈0|.
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Operating on quantum states

Having quantum states is great, but we need to be able to manipulate them.

• Ideally, we would like to be able to modify them as we wish:

|ψ〉 = α |0〉+ β |1〉 →
∣∣ψ′〉 = α′ |0〉+ β′ |1〉

• Since our basis states have 2 elements we need a 2 x 2 matrix to perform this operation.

• This matrix must conserve the normalization of the final state |ψ′〉.
• The class of matrices that satisfy these conditions are the Unitary Matrices: UU† = I.

• U is the unitary matrix, U† is its conjugate transpose, and I is the identity matrix.

Now that we know how to operate on qubits we’re ready to do more interesting things.
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Important operators

There are several quantum operators that are commonly used.

• Hadamard gate:

H |0〉 = 1√
2
(|0〉+ |1〉) = |+〉 , H |1〉 = 1√

2
(|0〉 − |1〉) = |−〉

H =
1√
2

[
1 1
1 −1

]
This gate creates a uniform superposition of the basis states |0〉 and |1〉. These states are so
common that they get their own symbols, |+〉 and |−〉. The Hadamard operator is commonly
used at the beginning of quantum circuits, as we’ll see later.

Note further that it is its own inverse: H2 = I.
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Important operators, continued

More commonly encountered quantum operators include:

• Pauli X gate (also known as the ”bit flip” or ”NOT gate”):

X =

[
0 1
1 0

]
, X |0〉 = |1〉 , X |1〉 = |0〉

• RZ gate: if |ψ〉 = α |0〉+ β |1〉, then

RZ(ω) =

[
e−i

ω
2 0

0 ei
ω
2

]
RZ(ω) |ψ〉 = e−i

ω
2

(
α |0〉+ βeiω |1〉

)
This gate changes the relative phase between |0〉 and |1〉. Note that global phases do not
affect the probability of measuring the state in question, and are thus usually ignored.
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The Bloch sphere

The normalization requirement of
qubits allows us to express
single-qubit quantum states in a
more-general form:

|ψ〉 = cos

(
θ

2

)
|0〉+sin

(
θ

2

)
eiω |1〉

Thus, the state is now parameterized
by two angles, θ and ω.

This representation suggests that we
could interpret a single-qubit as a
vector on the unit sphere.
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Bloch sphere rotations

In this representation, the RZ gate
can now be interpreted as a rotation
about the z axis.

RZ(ω) |ψ〉 =
∣∣ψ′〉

= α |0〉+ βeiω |1〉

Thinking about operators as
rotations about the Bloch sphere can
sometimes be helpful.
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Important operators, continued more

We aren’t restricted to rotating around the z axis. Other operators will rotate around an axis
as well:

• The RX(θ) gate rotates about the x axis:

RX(θ) =

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

) 
• The RY (θ) gate rotates about the y axis:

RY (θ) =

cos (θ2) − sin
(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

) 
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The generic operator

In its most-general form, a unitary operator can be expressed as a function of rotations about
all three axes.

R(φ, θ, ω) =

e−i(φ+ω)/2 cos (θ2) −ei(φ−ω)/2 sin (θ2)
e−i(φ−ω)/2 sin

(
θ
2

)
ei(φ+ω)/2 cos

(
θ
2

) 

All unitary operators can be expressed in this form.
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Important operators, continued some more

More common quantum operators:

• Pauli Z gate (equivalent to RZ(π)):

Z =

[
1 0
0 −1

]
Z |0〉 = |0〉 , Z |1〉 = − |1〉

This gate is its own inverse. Z2 = I.

• Pauli Y gate (equivalent to RY (π)):

Y =

[
0 −i
i 0

]
Y |0〉 = i |1〉 , Y |1〉 = −i |0〉

Y 2 = I.
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Important operators, continued even more

Another common quantum operator:

• S gate (equivalent to RZ(π/2)):

S =

[
1 0
0 i

]
S |0〉 = |0〉 , S |1〉 = i |1〉

S2 = Z, which means S4 = I.
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Bloch sphere, continued

The vectors along the axes are the
eigenvectors of various Pauli operators.

• Pauli X: |+〉 and |−〉,
• Pauli Y: |y+〉 and |y−〉,
• Pauli Z: |0〉 and |1〉.

Where

• |y+〉 = |0〉+ i |1〉
• |y−〉 = |0〉 − i |1〉
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Observables

Measuring a qubit’s state is great, but sometimes we’re interested in other quantities, which
are related to something physical.

• Physical quantities are related to ’observables’.

• Observables correspond to operators which can be represented as a Hermitian matrix
(A = A†).

• The eigenvalues of the operator represent the possible measurement values.

• To get the value of the observable we need to measure the observable’s expectation value:
〈ψ|A |ψ〉
• Pauli Z is an example of an observable, with measurement values -1 and 1.

The measurements we make are either of qubit states or observables.
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The goal

What can we do with all we’ve got so far? What are we trying to accomplish?

• We want to manipulate quantum states using our operators.

• These quantum states will represent some physical or numerical quantity.

• The operations on the states will be chosen so as to implement the algorithm that is
desired.

• Such a set of operations and states is known as a ”quantum circuit”.

• Once we’ve done all of the operations that we need, we will measure the final quantum
states, or some observable.

• These measurements will be used to give the answer to whatever calculation we are after.

This is the end point of this whole line of work. Of course, crafting algorithms that can
accomplish specific tasks can be non-trivial, and is an active area of research.
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Quantum circuits

Quantum circuits are organized by qubit, as per the image below.

|0〉 H

|0〉 H RZ(θ)

|0〉 Z H

Time runs from left to right. Each ”wire” in the circuit represents a qubit. The various gates
and operations are represented by boxes or connections between the wires. The rightmost
symbol is a measurement.
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Measuring things

Quantum mechanics starts to show up when we start measuring the output of our circuit.

• The quantum state is initialized at the beginning of the circuit.

• As soon as something is measured, whether it’s a qubit state or an observable, the system
”collapses” into a specific state.

• This means that the system is no longer in a superposition of states. It is a consequence
of ’observing’.

• To gather values, such as probability amplitudes, many measurements must be taken.

• As such, the circuit must be run many times.
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PennyLane

It’s time to start coding. We will be using the PennyLane quantum computing framework.

• Developed by Xanadu (https://xanadu.ai).

• Open source, with a Python interface.

• Specifically designed for differentiable programming of quantum computers.

• Implemented as both a quantum circuit simulator and a front end to a multitude of
different quantum-computer back ends.

• In today’s class we will be only using the quantum simulator. Getting access to Xanadu’s
cloud-accessible 7-qubit system is an option if you sign up.

PennyLane can be installed into your Python virtual environment in the usual way.

(venv) ejspence@mycomp ~>
(venv) ejspence@mycomp ~> pip install pennylane

(venv) ejspence@mycomp ~>
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Quantum computing frameworks, an aside

PennyLane is not the only quantum-computing framework available. There are many other
options out there.

• Cirq, Google, released 2018.

• Qiskit (Quantum Information Science Kit), IBM, 2017.

• Forest, Rigetti, 2017. This actually refers to the interface to Rigetti’s pyQuil package.

• Quantum Development Kit (QDK), Microsoft, based on its own language ”Q#”, 2018.

• And many many others.

A more comprehensive list can be found here:
https://quantumcomputingreport.com/tools.
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PennyLane, continued

In PennyLane computations are represented
as ”quantum node” objects. These are
used to define the circuit and to specify the
device that will execute the calculation.

Here we use the ”default.qubit” device,
which is a standard quantum simulator.

The number of ”wires” indicates the
number of qubits in our circuit.

The circuit itself is represented as a
function. By default all qubits are
initialized as |0〉.

In [1]: import numpy as np

In [2]: import pennylane as qml

In [3]:

In [3]: dev = qml.device(’default.qubit’,

...: wires = 1)

In [4]:

In [4]: def q circuit():

...: qml.Hadamard(wires = 0)

...: qml.RY(np.pi/3, wires = 0)

...: return qml.probs(wires = 0)

In [5]:

In [5]: qnode = qml.QNode(q circuit, dev)

In [6]:

In [6]: qnode()

Out[6]: tensor([0.0669873, 0.9330127],

requires grad=True)
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PennyLane, continued more

Rather than build our ”quantum node”
explicitly, it’s easier to build it using a
Python decorator.

If you’re not familiar with Python
decorators, they are invoked using the
”@” call before the function definition.

Many things can be returned by the
circuit. Here we return the final
quantum state.

Recall that 1/
√
2 ' 0.7071.

In [7]:

In [7]: dev = qml.device(’default.qubit’,

...: wires = 1)

In [8]:

In [8]: @qml.qnode(dev)

...: def q circuit2():

...: qml.Hadamard(wires = 0)

...: return qml.state()

In [9]:

In [9]: q circuit2()

Out[9]: tensor([0.70710678+0.j, 0.70710678+0.j],

requires grad=True)

In [10]:
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Hands-on 1

Now that we know how to program basic quantum circuits, it’s time to start playing with
PennyLane. See if you can create single-wire circuit functions that return the following
quantum states:

1 |−〉 = 1√
2
|0〉 − 1√

2
|1〉,

2
1√
2
|0〉+ 1√

2
ei

3π
4 |1〉, up to a global phase

3 −i |1〉
4 −i |0〉
5

√
3

2
|0〉 − i

2
|1〉

The PennyLane functions PauliX, Hadamard, RZ and RX will be useful.
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Multi-qubit systems

Thus far we’ve only been looking at single-qubit quantum states.

• These states can exist as a superposition of the basis states.

• Thus far, the only basis states we’ve been considering are the ”computational” basis
states, |0〉 and |1〉.
• Other basis states are possible, and are sometimes used, such as |+〉 and |−〉.
• When we deal with multi-qubit states, we deal with a superposition of all the underlying

qubits which are involved.

• This superposition is built using a tensor product.

[
a
b

]
⊗
[
c
d

]
=


a

[
c
d

]
b

[
c
d

]
 =


ac
ad
bc
bd


.
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Multi-qubit systems, continued

Our computational basis set is now represented by the tensor product of the two single qubits.

|0〉 ⊗ |0〉 =
[
1
0

]
⊗
[
1
0

]
=


1
0
0
0

 |0〉 ⊗ |1〉 =
[
1
0

]
⊗
[
0
1

]
=


0
1
0
0



|1〉 ⊗ |0〉 =
[
0
1

]
⊗
[
1
0

]
=


0
0
1
0

 |1〉 ⊗ |1〉 =
[
0
1

]
⊗
[
0
1

]
=


0
0
0
1


These states are represented with the symbols |00〉, |01〉, |10〉 and |11〉 respectively.
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Multi-qubit systems in PennyLane

Initializing a multi-qubit system in
PennyLane is as simple as
specifying more than one wire.

Note how the state of the system
is represented by a single
4-element vector, and the state is
initialized to |00〉.

In [10]:

In [10]: dev = qml.device(’default.qubit’,

...: wires = 2)

In [11]:

In [11]: @qml.qnode(dev)

...: def my mqubit():

...: return qml.state()

In [12]:

In [12]: my mqubit()

Out[12]: tensor([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],

requires grad=True)

In [13]:
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Multi-qubit operations

Operations on multiple qubits are expressed as the tensor product of the operators involved.

[
a b
c d

]
⊗
[
α β
δ γ

]
=

a
[
α β
δ γ

]
b

[
α β
δ γ

]
c

[
α β
δ γ

]
d

[
α β
δ γ

]
 =


aα aβ bα bβ
aδ aγ bδ bγ
cα cβ dα dβ
cδ cγ dδ dγ


.

The Unitary nature of the original operators means that the combined operator will also be
Unitary.
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Multi-qubit operations, example 1

Consider this situation:

• We have a 2-qubit state.

• We want to perform the Hadamard operator, but only on the first qubit.

• What is the resulting state?

|0〉 H

|0〉

This operation corresponds to the above circuit.
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Multi-qubit operations, example 1, continued

|0〉 H

|0〉

1√
2

[
1 1
1 −1

]
⊗
[
1 0
0 1

]
=

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


The second operator is just the identity matrix, which is, of course, also Unitary.
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Multi-qubit operations, example 1, continued more

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



1
0
0
0

 =
1√
2


1
0
1
0


.

Note that the starting state is
|0〉 ⊗ |0〉 = |00〉, and the final state is
1√
2
(|00〉+ |10〉).

In [13]:

In [13]: dev = qml.device(’default.qubit’,

...: wires = 2)

In [14]:

In [14]: @qml.qnode(dev)

...: def my mqubit2():

...: qml.Hadamard(wires = 0)

...: return qml.state()

In [15]:

In [15]: my mqubit2()

Out[15]: tensor([0.70710678+0.j, 0. +0.j,

0.70710678+0.j, 0. +0.j],

requires grad=True)

In [16]:
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Multi-qubit operations, example 1, continued even more

|0〉 H

|0〉

Another, perhaps simpler approach, would be to simply note that

(H |0〉)⊗ |0〉 =
1√
2
(|0〉+ |1〉)⊗ |0〉

=
1√
2
(|00〉+ |10〉)

Which is what we found on the previous slide.
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Multi-qubit operations, example 2

|0〉 X H

|0〉 H S

X ⊗H =

[
0 1
1 0

]
⊗ 1√

2

[
1 1
1 −1

]
=

1√
2


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0



H ⊗ S =
1√
2

[
1 1
1 −1

]
⊗
[
1 0
0 i

]
=

1√
2


1 0 1 0
0 i 0 i
1 0 −1 0
0 i 0 −i


Erik Spence (SciNet HPC Consortium) Introduction to quantum computing 8 July 2024 36 / 61

http://www.scinethpc.ca


Multi-qubit operations, example 2, continued

1√
2


1 0 1 0
0 i 0 i
1 0 −1 0
0 i 0 −i

 1√
2


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0



1
0
0
0

 =
1

2


1 0 1 0
0 i 0 i
1 0 −1 0
0 i 0 −i



0
0
1
1

 =
1

2


1
i
−1
−i



Note that, as the circuit is read left-to-right, the orientation of the matrix operators, relative
to the initial state vector, must be reversed.
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Multi-qubit operations, example 2, continued more

|0〉 X H

|0〉 H S

1

2


1 0 1 0
0 i 0 i
1 0 −1 0
0 i 0 −i



0
0
1
1

 =
1

2


1
i
−1
−i



In [16]: dev = qml.device(’default.qubit’,

...: wires = 2)

In [17]:

In [17]: @qml.qnode(dev)

...: def my mqubit3():

...: qml.PauliX(wires = 0)

...: qml.Hadamard(wires = 1)

...: qml.Hadamard(wires = 0)

...: qml.S(wires = 1)

...: return qml.state()

In [18]:

In [18]: my mqubit3()

Out[18]: tensor([0.5 +0.j, 0. +0.5j,

-0.5+0.j, -0. -0.5j],

requires grad=True)

In [19]:
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Multi-qubit operations, example 2, continued some more

|0〉 X H

|0〉 H S

Again, as before, another approach would be to simply note that

[HX |0〉]⊗ [SH |0〉] = [H |1〉]⊗
[
S

1√
2
(|0〉+ |1〉)

]
=

1√
2
(|0〉 − |1〉)⊗

[
1√
2
(|0〉+ i |1〉)

]
=

1

2
(|00〉+ i |01〉 − |10〉 − i |11〉)

Which is what we found on the previous slide.
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Entanglement

Superposition is the first feature of quantum computing that distinguishes it from classical
computing. The second property which distinguishes quantum computing is entanglement.

Suppose we have two single-qubit states.

|ψ1〉 = α |0〉+ β |1〉 , |ψ2〉 = γ |0〉+ δ |1〉

What is the tensor product of these two states?

|ψ1〉 ⊗ |ψ2〉 = (α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉)
= α |0〉 ⊗ (γ |0〉+ δ |1〉) + β |1〉 ⊗ (γ |0〉+ δ |1〉)
= αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉
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Entanglement, continued

Two single-qubit states combine thus:

|ψ1〉 ⊗ |ψ2〉 = αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉

Now consider the state

|φ〉 = 1√
2
(|00〉+ |11〉)

As you can see, there is no way to express the state |φ〉 as a combination of two single-qubit
states. An entangled state is a state that cannot be described as the tensor product of two
other states. As such, it can only be described by writing out the full state.

States that can be described in terms of smaller states are called ”separable”.
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Creating entangled states

How does one create an entangled state?

• Thus far all multi-qubit operations that we’ve performed involved tensor products of
single-qubit operations.

• To create an entangled state we need an ”entangling gate”.

• These gates transform a separable state into an entangled state.

• Like entangled states, entangled gates cannot be written as a tensor product of smaller
operations.

Entangling gates form an important part of quantum computing.
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Controlled-NOT gate

The CNOT (controlled-NOT gate) is an
important entangled gate.

• A two-qubit gate,

• the first qubit is the solid dot, the
”control qubit”,

• the second qubit is the circle-cross
symbol, the ”target qubit”,

• if the control qubit is ”1”, the Pauli X
operation is performed on the target
qubit.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


This representation of CNOT assumes
that the control bit is the first wire, and
the target bit the second.
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Controlled-NOT gate, continued

If the control bit is 1, then the target bit gets flipped.

CNOT |00〉 = |00〉
CNOT |01〉 = |01〉
CNOT |10〉 = |11〉
CNOT |11〉 = |10〉

Again, this assumes that the control bit is the first bit.
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Controlled-NOT gate, continued more

|0〉 X

|0〉

The first bit is the control bit.

The first wire indicated in the
code is the control bit, the second
is the target.

CNOT |10〉 = |11〉

In [19]: dev = qml.device(’default.qubit’,

...: wires = 2)

In [20]:

In [20]: @qml.qnode(dev)

...: def my cnot():

...: qml.PauliX(wires = 0)

...: qml.CNOT(wires = [0, 1])

...: return qml.state()

In [21]:

In [21]: my cnot()

Out[21]: tensor([0.+0.j, 0.+0.j, 0.+0.j, 1.+0j],

requires grad=True)

In [22]:
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Controlled-NOT gate, continued some more

|0〉

|0〉 X

Again, the first bit is the control
bit.

The first wire indicated in the
code is the control bit, the second
is the target.

CNOT |01〉 = |01〉

In [22]: dev = qml.device(’default.qubit’,

...: wires = 2)

In [23]:

In [23]: @qml.qnode(dev)

...: def my cnot():

...: qml.PauliX(wires = 1)

...: qml.CNOT(wires = [0, 1])

...: return qml.state()

In [24]:

In [24]: my cnot()

Out[24]: tensor([0.+0.j, 0.+0.j, 1.+0.j, 0.+0j],

requires grad=True)

In [25]:
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Universal controlled gates

The CNOT is not the only operation to
which we can apply control.

In general we can apply control to any
Unitary operation.

Once again, this representation assumes
that the control bit is the first wire, and
the target bit the second.

U

CU =

[
I2 0
0 U

]

Where I2 is the 2 x 2 Identity matrix, and
U is the Unitary operator we are
controlling.
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Other controlled gates

The Controlled-Z gate is another you may
encounter.

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Also known as the CZ gate, or the
controlled phase gate.

The SWAP gate does exactly that: it
swaps the states of the 2 qubits.

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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Other controlled gates, continued

We aren’t restricted to 2-qubit gates.

Another important gate is the Toffoli
gate, which is essentially a
controlled-CNOT gate. It has 2
control qubits and a single target
qubit.

This is by-far the most common
larger gate. TOF =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


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Quantum teleportation

Suppose we run an awesome circuit and get our awesome final state. What happens if we
want to give that state to someone else?

• One way to give our state to someone else is to use teleportation.

• Why bother, why not just give our final state to someone else?

• It turns out that copying of arbitrary states is not possible.

• This is known as the no-clone theorem.

The proof of this is straightforward.
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The no-clone theorem

Suppose that we’d like a circuit, U , that can perform the following cloning operation:

U (|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉
U (|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉

Where |φ〉 and |ψ〉 are arbitrary single-qubit states, and |s〉 is an arbitrary starting state. We
note that (〈c| ⊗ 〈d|) (|a〉 ⊗ |b〉) = (〈c|a〉) · (〈d|b〉).

• Take the inner product of the left side of both equations. This gives 〈ψ|φ〉.
• Take the inner product of the right side of both equations. This gives (〈ψ|φ〉)2.

• These two inner products must be equal. But this only possible if 〈ψ|φ〉 = 0 or 1.

This means either |φ〉 = |ψ〉 or the two states are orthogonal. Thus, we can’t clone arbitrary
states.
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Quantum teleportation, the circuit

So we can’t copy arbitrary states. If we want to share a qubit, perhaps we could transmit the
state of the qubit, rather than the qubit itself. The teleportation circuit is given below.

|ψ〉 H

|0〉 H

|0〉 Z |ψ〉

So how does this circuit work?
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Quantum teleportation, the circuit, continued
Change basis

Entangle

|ψ〉 H

|0〉 H

|0〉 Z |ψ〉

So let’s look at the steps.

• Prepare the combined state, |ψ00〉.
• Entangle the qubits. This gives us 1√

2
(|ψ00〉+ |ψ11〉).

• Change the basis to the Bell basis. This results in
1

2
[|00〉 (α |0〉+ β |1〉) + |01〉 (β |0〉+ α |1〉) +

+ |10〉 (α |0〉 − β |1〉) + |11〉 (−β |0〉+ α |1〉)]
• The first two qubits are then measured.
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Quantum teleportation, interpretation

|ψ〉 H

|0〉 H

|0〉 Z |ψ〉

We only measure the first 2 qubits. How do we interpret the output?

• If the state |00〉 is measured, then we know that the third qubit is in state |ψ〉.
• If the state |01〉 is measured, we know we need to apply a Pauli X gate to the third cubit

to get back |ψ〉.
• Alternatively, we can apply the above controlled operations before the measurement is

made. This allows us to guarantee getting the correct state.
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Implementing quantum computers

Now that you have a sense of how a quantum calculation might be performed, you can start
to see some of the characteristics we would expect a quantum computer to have.

• We need qubits! These must be able to be in a superposition of computational basis
states.

• The more qubits we can have interacting, the better.

• We need qubits that can entangle with each other.

• We need to be able to initialize the qubits into a specific state.

• We need the qubits to hold their states (this is a big problem!).

• We need to be able to apply operations to the qubits.

• We need to be able to measure the qubits.

What sort of hardware might work for this?
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Types of quantum computers

What sort of hardware is used for these (gate-based) quantum computers?

• Neutral atom: magneto-optical traps are used to trap Cesium or Rubidium. These are
cooled to mK temperatures, and put into an array, and manipulated.

• Nitrogen-vacancy center-in-diamond: a diamond is built with a pair of missing carbon
atoms, which are replaced with nitrogen. The resulting defect is manipulated using
microwaves.

• Photonics: optical techniques are used to create qubits. However, photons cannot
interact in a vacuum, but only indirectly through another medium.

• Spin-Qubits: silicon-based quantum dots.

• Superconducting qubits: a Cooper pair is joined to a Josephson junction. Unitary
operations are applied using microwaves.

• Trapped Ion.

• And many others.
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Hardware concerns

The various different approaches have advantages and disadvantages.

Ion trap Superconducting Semiconducting NV-centres

Coherence time > 1s ∼ 90µs ∼ 28 ms ∼ 250 ns
Scalability - + +++ ++

The technical terms:

• Coherence time: how long the qubits are in the state we expect.

• Scalability: how easily the technology can add more qubits.

The technologies are still fighting it out for dominance.
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Summary

A summary of today’s class.

• Quantum computers operate on qubits, rather than regular bits.

• These qubits can be in a superposition of states.

• Operations are performed on qubits to manipulate their values, and how they relate to
each other.

• Algorithms which manipulate qubit are expressed as quantum circuits.

• Multi-qubit systems involve superpositions of multiple qubits. These are built by taking
the tensor product of the underlying qubits.

• An entangled state is a quantum state that cannot be expressed as a tensor product of
smaller quantum states.

• Entangled states are built using entangling operators.

We will start building quantum algorithms next class.
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Hands-on 2

Let’s play with some multi-qubit circuits.

1 See if you can create two-qubit circuit functions that return the following quantum states
(these are known as the Bell states):

1 |ψ+〉 = 1√
2
(|00〉+ |11〉),

2 |ψ−〉 = 1√
2
(|00〉 − |11〉),

3 |φ+〉 = 1√
2
(|01〉+ |10〉),

4 |φ−〉 = 1√
2
(|01〉 − |10〉).

2 Write a function that implements the SWAP gate, using only CNOT gates. How many
CNOT gates are necessary?

The PennyLane functions PauliX, Hadamard, CNOT and PauliZ will be useful.
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Hands-on 2, continued more

3 (Optional) Next class we will encounter the following gate:

RY (θ)

Write a function that implements this gate using only CNOT and single-qubit RY (θ)
gates.
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Linky goodness

PennyLane:

• https://github.com/PennyLaneAI/pennylane

• https://www.qmunity.tech/tutorials/an-introduction-to-pennylane

Quantum computing:

• https://xanadu.ai

• https://codebook.xanadu.ai

• https://www.scientificamerican.com/video/how-does-a-quantum-computer-work

• https://www.epiqc.cs.uchicago.edu/qc-introduction
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