
Neural network programming:
sequence-to-sequence networks

Erik Spence

SciNet HPC Consortium

28 May 2024

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 1 / 26

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1327

Click on the link for the class, look under ”Lectures”, click on ”Sequence-to-sequence
networks”.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 2 / 26

https://scinet.courses/1327

Today’s class

This class will cover the following topics:

Classes of recurrent-neural-network problems.

Word representation frameworks.

Sequence-to-sequence networks.

Example.

Please ask questions if something isn’t clear.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 3 / 26

Other classes of RNNs

The example recurrent neural network which we dealt with last class was good, but it
represented only one of the several types of recurrent neural networks we can describe. These
are:

one-to-one (one input, one output),

many-to-one (many inputs, one output),

one-to-many (one input, many outputs),

many-to-many (many inputs, many outputs).

Obviously, the type we did last class was of the second type, many-to-one. Today we’d like to
examine a more-complicated type, the many-to-many recurrent neural network, also called a
sequence-to-sequence network.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 4 / 26

One-hot encoding of sentences

Recall the previous way we represented our sentences. In this representation, all words are
given an index in a vector of length num words (the size of the vocabulary). The word gets a
’1’ when the word occurs and a ’0’ when it doesn’t. The sentence then consists of an array of
sentence length rows and num words columns.

Consider the sentence ”The dog is in the dog crate.”

The number of unique words is 5. Each word gets its
own index: {the: 0, dog: 1, is: 2, in: 3, crate: 4}.

The sentence above can then be represented by the
matrix to the right, with dimensions (sentence length,
num words).

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 5 / 26

Dealing with text sequences

Before we get to the sequence-to-sequence network we first need to deal with the shortcoming
we identified with the approach we used last class:

the input data was way too sparse,

as a result, the information density of the input was extremely low, and the dimensionality
of the problem was way too high.

This is extremely inefficient, both from a training and a processing point of view.

It would be better if we could come up with a technique which could condense the
information associated with each word into a format with higher information density.

Various techniques to address this problem have been explored over the last decade.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 6 / 26

Word embeddings
The first major attempt at associating words with the words found around them were the
word-embedding algorithms.

word2vec (2013): a neural network model developed by Google, it doesn’t need to be
trained with the network that uses it. It uses the words around the word to produce an
output vector, which represents the word.

Global Vectors for Word Representation (GLoVe, 2014): combines matrix factorization
techniques with word2vec.

Word embeddings have a major problem. Consider word class in these two sentences:

I was in my neural network programming class.

That woman has class.

The word-embedding algorithms output the same word vector for both uses of the word class.
The word vectors are context independent.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 7 / 26

Sub-word tokenization

A different approach to word-representation is to break up the words into characters or
”tokens” (word pieces).

Early attempts to simplify things broke words up into individual characters. This resulted
in a small vocabulary.

Later attempts have used ”word pieces” (tokens). In this approach, words are broken up
into common subwords.

Once the input sentence has been ”tokenized” (broken up into the representation of choice),
the input was often passed through an embedding layer. Note that this approach does not
solve the lack-of-context problem which plagues word embeddings.

The use of word pieces has been more successfuly than individual characters. This is the
approach which we will use in this class.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 8 / 26

Embedding layers

What are embedding layers, and how do they work?

Embedding layers were developed for text analysis.

For each input token index, the layer returns a vector of length embedding dimension
which corresponds to a word’s ”word embedding”.

This vector is simply a row from a matrix of weights, of shape (vocabulary size,
embedding dimension). These weights are learned as part of the NN training.

The embedding layer transforms each token-index i into the ith row of the embedding
weights matrix, resulting in a matrix of shape (vocabulary size, embedding dimension).

This allows the word tokens to be represented by indices without one-hot-encoding them all.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 9 / 26

Sequence-to-sequence networks (2014)

Now that we’ve got a strategy for representing our words (sub-word tokenization + embedding
layer) we are ready to address sequence-to-sequence networks.

Sequence-to-sequence networks deal with the more-generic case of variable-length input
and output.

Applications of such networks include language translation, automatic text generation.

Unlike the many-to-one network which we examined before, in this case the entire input
must be processed before the output can be generated.

The requirement of processing the entire input before proceeding to the output requires a
different approach to our network.

We can leverage our previous work with LSTMs to build such a network.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 10 / 26

Long Short Term Memory networks, memory cells

tanh

x

x

x

+

σ

σ

tanh

σ
output

input

single
neuron

pointwise
operation

forget gate

input gate

input node

output gate

internal state

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 11 / 26

Sequence-to-sequence networks, continued

How do we build such a network?

We use an LSTM layer (or several) as an ”encoder”.

This will process the input sequence and then return the LSTM layer’s hidden states (the
internal states of the LSTM memory cells), rather than return the output of the layer.
The output of the layer is discarded.

The hidden states acts as ”context” for the next step, the decoder.

A second LSTM layer (or several) is then used as a ”decoder”.

The decoder is trained to do next-word prediction on the target data.

The decoder takes the hidden states of the encoder as its initial internal state.

In a sense you can think of this as an RNN autoencoder (though not quite).

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 12 / 26

Sequence-to-sequence networks, continued more

”Do” ”not” ”!” [STOP]

LSTM
encoder

LSTM
encoder

LSTM
encoder

LSTM
decoder

LSTM
decoder

LSTM
decoder

LSTM
decoder

h
id
d
en

st
a
te

h
id
d
en

st
a
te

h
id
d
en

st
a
te

h
id
d
en

st
a
te

h
id
d
en

st
a
te

h
id
d
en

st
a
te

”You” ”stink” ”.” [START] [START]
”Do”

[START]
”Do”
”not”

[START]
”Do”
”not”
”!”

discarded outputs

Recall that the words are first all tokenized, and the output of the decoder is fed
back into itself. Only the encoder’s final hidden state is passed to the decoder.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 13 / 26

Sequence-to-sequence example

Let’s create a question-answer chatbot using a sequence-to-sequence neural network. We will
use the Cornell Movie Dialog data set.

The data set consists of conversations extracted from movie scripts.

220,579 conversational exchanges,

10,292 pairs of movie characters.

the data set is full of metadata:
I genres of movies
I release year
I character metadata

We will use these talk-response pairs to train a sequence-to-sequence network. Once the
network is trained, given an input text sequence we will get a response text sequence.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 14 / 26

Sequence-to-sequence example, continued

How do we prepare the data to train such a network? We need to craft two input data sets,
and a single target:

the encoder input data set, consisting of the input data,

the decoder input data set, consisting of the target data, used as inputs for
next-word-prediction training of the decoder.

the decoder target data set, which is the next word target for the decoder training.

We will also tokenize both the input and target data. We will treat the output of the decoder
as a categorization problem, one-hot-encoding the vocabulary.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 15 / 26

Sequence-to-sequence example, code
Learn Movies.py

import numpy as np; import shelve

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

import tensorflow datasets.deprecated.text as tfds

import tensorflow.keras.preprocessing as tfkp

Max sentence length, LSTM and embedding size.

max len = 40; latent size = lstm size = 64

Preprocess (not shown). Convert the data into

2 lists of cleaned questions and answers.

tokens = tfds.SubwordTextEncoder.build from corpus(

questions + answers, target vocab size = 2**13)

START = [tokens.vocab size]

END = [tokens.vocab size + 1]

VOCAB SIZE = tokens.vocab size + 2

t q, t a = [], []

for q, a in zip(questions, answers):

t q.append(START + tokens.encode(q) + END)

t a.append(START + tokens.encode(a) + END)

input size = len(t q)

encoder data = tfkp.sequence.pad sequences(t q,

maxlen = max len, padding = "post")

decoder data = tfkp.sequence.pad sequences(t a,

maxlen = max len, padding = "post")

Encode the decoder target.

decoder target = np.zeros((input size, max len,

VOCAB SIZE), dtype = bool)

for i in range(input size):

for j in range(1,max len):

decoder target[i, j-1, decoder data[i,j]] = 1

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 16 / 26

Sequence-to-sequence example, code, continued
Learn Movies.py, continued

encoder input = kl.Input(shape = None)

encoder embed = kl.Embedding(VOCAB SIZE,

latent size, input length = max len,

name = "encoder embed")

encoder embed output = \

encoder embed(encoder input)

encoder lstm = kl.LSTM(lstm size,

return state = True, name = "e lstm",

input shape = (max len, latent size))

Throw away the encoder output.

, state h, state c = \

encoder lstm(encoder embed output)

encoder states = [state h, state c]

decoder input = kl.Input(shape = None)

decoder embed = kl.Embedding(VOCAB SIZE, latent size,

input length = max len, name = "decoder embed")

decoder embed output = decoder embed(decoder input)

decoder lstm = kl.LSTM(lstm size, name = "d lstm",

return sequences = True,

input shape = (max len, latent size))

decoder lstm output = decoder lstm(decoder embed output,

initial state = encoder states)

decoder dense = kl.Dense(VOCAB SIZE,

activation = "softmax", name = "output")

decoder output = decoder dense(decoder lstm output)

model = km.Model([encoder input, decoder input],

decoder output)

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 17 / 26

Sequence-to-sequence example, code, continued more

Learn Movies.py, continued

model.compile(optimizer = "adam",

loss = "categorical crossentropy",

metrics = ["accuracy"])

fit = model.fit([encoder data, decoder data],

decoder target, epochs = 500,

batch size = 128, verbose = 2)

model.save("movies.S2S.h5")

Do not run this. And don’t even think of
running it without a GPU.

ejspence@mycomp ~>
ejspence@mycomp ~> python Learn Movies.py

Epoch 1/250

81450/81450 - 255s - loss: 1.6200 - acc: 0.8208

- 117s - loss: 1.4271 - acc: 0.7963

Epoch 2/250

81450/81450 - 255s - loss: 0.9436 - acc: 0.8562
.
.
.

Epoch 248/250

81450/81450 - 254s - loss: 0.5058 - acc: 0.9009

Epoch 249/250

81450/81450 - 255s - loss: 0.5055 - acc: 0.9010

Epoch 250/250

81450/81450 - 253s - loss: 0.5052 - acc: 0.9010

ejspence@mycomp ~>

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 18 / 26

~
~
~

Inference with sequence-to-sequence networks

Great! Now that the network is trained we’re ready to test our chatbot. As you might expect,
to perform inference (run new data forward through the network) we

feed the new input sequence into the encoder,

grab the internal state of the encoder,

We then iterate on the decoder:
I pass the internal state of the encoder to the decoder,
I starting with the ”[START]” symbol, perform next word prediction to get the first predicted

word,
I append the first word to the ”[START]” symbol, and then use that as the input to the

decoder,
I repeat until we generate the ”[STOP]” symbol.

Let’s build such a neural network.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 19 / 26

Sequence-to-sequence example, generating code

Generate Movies.py

import shelve, numpy as np

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

model = km.load model("movies.S2S.h5")

layers = {layer.name: layer

for layer in model.layers}

g = shelve.open("movies.metadata.shelve")

tokens = g["tokens"]

max len = g["max len"]

g.close()

Encoder input layer.

encoder input = kl.Input(shape = (None,))

Encoder embedding layer.

encoder embed = layers["encoder embed"]

encoder embed output = \

encoder embed(encoder input)

Encoder LSTM layer.

encoder lstm = layers["e lstm"]

, e state h, e state c = \

encoder lstm(encoder embed output)

encoder states = [e state h, e state c]

Encoder gets its own model.

encoder model = km.Model(encoder input,

encoder states)

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 20 / 26

S2S example, generating code, continued

Generate Movies.py, continued

Decoder input layer.

decoder input = kl.Input(shape = (None,))

Decoder embedding layer.

decoder embed = layers["decoder embed"]

decoder embed output = decoder embed(decoder input)

Decoder encoder-hidden-state input.

decoder state input h = kl.Input(shape = (None,))

decoder state input c = kl.Input(shape = (None,))

decoder state inputs = [decoder state input h,

decoder state input c]

Decoder LSTM.

decoder lstm = layers["d lstm"]

decoder lstm output = \

decoder lstm(decoder embed output,

initial state = decoder state inputs)

decoder dense = layers["output"]

decoder output = decoder dense(decoder lstm output)

decoder model = km.Model(

[decoder input] + decoder state inputs,

decoder output)

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 21 / 26

S2S example, generating code, continued more
Generate Movies.py, continued

input text = "It’s hot out today."

START = [token.vocab size]

END = [token.vocab size + 1]

The clean text function preps the input.

t input = START + \

tokens.encode(clean text(input text)) +

END

Create and populate the x data.

encoder data = np.zeros((1, max len))

encoder data[0, 0:len(t input)] = t input

encoder states value = \

encoder model.predict(encoder data)

decoder data = np.zeros((1, max len))

decoder data[0, 0] = START[0]

done = False; response = ""; i = 1

while (not done):

d output = decoder model.predict([decoder data]

+ encoder states value)

token index = np.argmax(d output[0, i - 1, :])

if token index != END[0]:

response += tokens.decode([token index]) + " "

else: done = True

decoder data[0, i] = token index

print("The input is", input text)

print("The response is", response)

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 22 / 26

Sequence-to-sequence example, result

Once you have the model and the metadata you can run this on your laptop.

ejspence@mycomp ~>
ejspence@mycomp ~> python Generate Movies.py

The input is

It’s hot out today.

The response is

what are you ?

ejspence@mycomp ~>

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 23 / 26

~
~
~

Notes about our model

Some thoughts about our model.

The model is complicated, has many many free parameters, and takes a while to train,
even with a GPU.

The data set is too small, there is some overfitting seen with the validation data.

A modification option would be to add another LSTM layer to both the encoder and
decoder, but even more data would be needed.

This is moving in the correct direction, but it does suffer from some shortcomings.
More-advanced techniques are yet available. We’ll look at those next class.

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 24 / 26

Linky goodness

word2vec:

http://adventuresinmachinelearning.com/word2vec-keras-tutorial

http://www.claudiobellei.com/2018/01/07/backprop-word2vec-python

https:

//machinelearningmastery.com/develop-word-embeddings-python-gensim

https://rare-technologies.com/deep-learning-with-word2vec-and-gensim

Dynamic word representations:

ELMo: https://arxiv.org/abs/1802.05365

ULMFiT: https://arxiv.org/abs/1801.06146

BERT: https://arxiv.org/abs/1810.04805

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 25 / 26

http://adventuresinmachinelearning.com/word2vec-keras-tutorial
http://www.claudiobellei.com/2018/01/07/backprop-word2vec-python
https://machinelearningmastery.com/develop-word-embeddings-python-gensim
https://machinelearningmastery.com/develop-word-embeddings-python-gensim
https://rare-technologies.com/deep-learning-with-word2vec-and-gensim
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1810.04805

Linky goodness, continued

Cornell Movie-Dialogs Corpus:

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

Sequence-to-sequence neural networks:

https://arxiv.org/abs/1409.3215

https://arxiv.org/abs/1406.1078

https://blog.keras.io/

a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.

html

Erik Spence (SciNet HPC Consortium) Sequence-to-sequence networks 28 May 2024 26 / 26

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1406.1078
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

	Generative neural networks
	One-hot encoding
	Embedding layers

