
Neural network programming:
graph neural networks

Erik Spence

SciNet HPC Consortium

21 May 2024

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 1 / 29

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1327

Click on the link for the class, and look under ”Lectures”, click on ”Graph Neural Networks”.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 2 / 29

https://scinet.courses/1327

Today’s class

This class will cover the following topics:

Graphs.

Graph neural networks.

Graph convolutional neural networks.

Example.

Please ask questions if something isn’t clear.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 3 / 29

What is a graph?

What is a graph?

A ”graph” is a type of data structure.

It is built of two main components:
I ”nodes”: also called ”vertices”, which are usually

the ”things” that make up the graph,
I ”edges”: connections between the nodes which

describe some sort of relationship between them.

The nodes can contain labels or features or both.

The edges can also contain weights, directions, or
other characteristics that quantify the relationship
between the nodes.

This data structure shows up in any situation
where there are relationships between components.

0

1

2

3

4

5

Applying neural networks to
this type of data has been an
active area of research for
many years.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 4 / 29

Examples of graphs

Graphs show up in many different situations.

social networks,

traffic problems,

chemistry, drug discovery,

recommendation systems,

images,

text,

and many many other applications.

Graphs show up in many areas where you might not expect it.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 5 / 29

Graph neural networks

What are graph neural networks (GNNs)?

Graphs contain many different types of data within them:
I nodes: labels and features,
I edges: connections between nodes, and associated weights, labels or features,
I whole graph: may also have labels and features.

As with CNNs, where we adapted the network to the nature of the data, to treat a graph
properly using a neural network we need to adapt to this disparate-but-structured data
format.

Graph neural networks are neural networks which have been specially-crafted to deal with
the unique characteristics of graphs.

To use the graph as input data to a neural network requires modifications to the network
we’ve already been using.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 6 / 29

Graph neural network problems

What sort of problems can GNNs solve?

Node problems:
I classifying the labels of nodes
I predicting features of nodes

Edge problems:
I predicting weights of edges
I predicting missing edges

Whole-graph problems:
I classifying graphs
I predicting features of the whole graph

Combinations of the above.

Pretty much, if you can imagine it you can try to apply a GNN to it.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 7 / 29

How do you include a graph as input?

At first it’s not be obvious how you would use a graph
as an input to a neural network.

Why? Because unlike array-like data, each data
point will have a different number of nodes and
edges. How do we input that into the network?

You could include the nodes, with their labels and
features, as the inputs and targets of the network.

You could do the same thing with the edges, and
their labels and features.

But both of these approaches ignore the
interconnectedness of the nodes.

We need a way of encoding the fact that the nodes
are connected to specific neighbours.

0

1

2

3

4

5

The solution to this problem is
to use an Adjacency Matrix.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 8 / 29

Adjacency matrices

The Adjacency matrix of a graph encodes which nodes
have connections between them.

In its simplest form, without direction or weights, the
matrix just consists of a collection of zeros and ones.
The matrix below corresponds to the graph to the right.



0 1 0 1 0 1
1 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
0 0 0 1 0 0
1 0 1 0 0 0



0

1

2

3

4

5

Note that the diagonal is
populated by zeros. There are
no edges that connect a node
to itself.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 9 / 29

Graph Convolutional Networks (2017)

How do you work the adjacency matrix into the input of the network, or a layer?

If both the node features and the adjacency matrix are used as input to a given NN layer,
we can encode neighbour information into the network.

There are several ways that this might be accomplished. One early way of doing this was

f`(H`−1, A) = g (AH`−1w`)

where
I f` is the output of the ell’th layer,
I H`−1 is the output of the previous layer (the input to this layer),
I g is the activation function,
I A is the adjacency matrix,
I w` are the ell’th layer’s weights.

This approach to GNNs is known as a Graph Convolutional Network (GCN).

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 10 / 29

Graph Convolutional Networks, continued

f`(H`−1, A) = g (AH`−1w`)

How does this work?

A is the adjacency matrix, with dimension (num nodes, num nodes),

H`−1 is the output of the previous layer, with dimension (num nodes,
num node features),

w` are the layer’s weights (num node features, num node features).

This matrix multiplication leads to a layer output of dimension (num nodes,
num node features), which can then be fed into the next layer. All of the layer’s trainable
parameters are in the w` array. Note that there are no neurons as such.

Also note that these dimensions only apply to a single input graph, since each graph will have
a different number of nodes.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 11 / 29

Graph Convolutional Networks, continued more

Using just the matrix product AH`−1w` as the output of the NN layer is not the best
approach. A couple of modifications need to be added.

The first problem we encounter is with A itself. If we multiply by A, then each node gets
interaction information about its neighbours, but the information about itself is lost (assuming
that the diagonals of A are zero). This is fixed by putting ones on the diagonal of A.

Thus, in practice, we use Â = A + I, where I is the identity matrix.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 12 / 29

Graph Convolutional Networks, continued some more

The second problem has to do with the number of edges each node has.

If A is not normalized then the scale of the values of the features will be changed,
depending on the number of connections a given node has. This is fixed by normalizing
each row of A.

If D is a diagonal matrix containing the degree of each row of A (the number of
connections each node has), then we can normalize by using D−1A. This corresponds to
averaging the features of the neighbouring nodes.

In practice, a symmetric normalization is usually used: D−1
2AD−1

2 .

f(H`−1, A) = g
(
D̂−1

2 ÂD̂−1
2H`−1w`

)
where Â = A + I, I is the identity matrix, and D̂ is the degree matrix of Â.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 13 / 29

Graph Convolutional Networks, continued even more

f(H`−1, A) = g
(
D̂−1

2 ÂD̂−1
2H`−1w`

)
This is the operation that is applied at each GCN layer.

Note that there aren’t any neurons, as such. All the weights are buried in the matrix, w`.

Note also that there aren’t any biases, though in theory we could add them.

The activation function is applied to the resulting matrix, element-by-element.

By applying this matrix operation, information is spread from a single node to its
immediate neighbours.

Consequently, to spread information about a given node further than the immediate
neighbours, multiple of such operations must be performed.

To build such an operation we will create a custom Keras layer.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 14 / 29

Custom Keras layers

To use a layer that performs custom operations requires creating a new type of layer.

Keras allows you to define custom layers for your neural network.

The layer is defined as an extension to the tensorflow.keras.layers.Layer class.

A custom layer in Keras can define three methods:
I init : the constructor, defines layer attributes and weights that do not depend on the size

of the input,
I build(input shape): the function which builds the layer, and defines the weights and biases

that depend on the input shape. Last class we didn’t need this function, as we didn’t need to
specify our trainable parameters explicitly.

I call(inputs): the function which defines how the inputs are processed through the layer, and
output.

Once defined, the layer can be used like any other layer.

We will define two types of such layers for our GCN.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 15 / 29

Our custom Keras layer

The custom layer is a class.

The class extends Keras’ ”Layer”
class.

The first thing we define is the
constructor.

All we do here is define the activation
function.

The ”super” function accesses the
kl.Layer functions, in this case the
base constructor.

You will need to understand object oriented
programming in Python to understand
what’s going on here.

mutag layers.py

import tensorflow as tf

import tensorflow.keras.activations as ka

import tensorflow.keras.layers as kl

class GCNLayer(kl.Layer):

def init (self, activation = None, **kwargs):

super(GCNLayer, self). init (**kwargs)

self.activation = ka.get(activation)

def build(self, input shape):

Get the input shape, then build the weights.

node shape, adj shape = input shape

self.w = self.add weight(

shape = (node shape[2], node shape[2]),

name = ’w’, trainable = True)

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 16 / 29

Our custom Keras layer, continued
The final piece is the call function.

All that needs to be done is
craft the operation of the layer.

Note that the adjacency matrix
is returned as well as the
output, so it can be used in the
subsequent layer.

mutag layers.py, continued

def call(self, inputs):

The input is a tuple, containing H and the

adjacency matrix.

H, adj = inputs

The degree of the adjacency matrix, normalized

degree = tf.reduce sum(adj, axis = -1)

norm degree = tf.linalg.diag(tf.pow(degree, -0.5))

Normalize the adjacency matrix.

norm adj = tf.matmul(norm degree,

tf.matmul(adj, norm degree))

The output, before activation.

output = tf.matmul(norm adj, tf.matmul(H, self.w))

return self.activation(output), adj

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 17 / 29

Example

Let’s do an example. Consider the ”MUTAG” data set.

A collection of graph data sets from University of Dortmund.

Consists of molecules, each with a label, -1, or 1.

Each node has a label, which will be one-hot-encoded into a feature.

Each node also has as an adjacency matrix.

The edges also have labels.

There are 188 molecules in total.

The goal is to classify the molecules into the correct category. The data can be found here:

https://www.chrsmrrs.com/graphkerneldatasets/MUTAG.zip

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 18 / 29

https://www.chrsmrrs.com/graphkerneldatasets/MUTAG.zip

Example, our approach

How shall we solve this problem?

Build a neural network consisting of several Graph Convolutional layers.

We will use the labels of the nodes as input, as well as the adjacency matrix. We will not
use the edge labels in this example.

As shown previously, we’ll pass both the output of the previous layer’s calculation, and
the adjacency matrix, to each subsequent layer.

But for this to work we’ll need another custom layer that can deal with the special output
of the Graph Convolutional layer, the adjacency matrix in particular.

We’ll follow this by a fully-connected layer.

This will then be followed by a 2-node output layer, of the type we usually use for
classification problems.

The goal is to classify the molecules into the correct category.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 19 / 29

A second custom Keras layer

We need a second custom layer to
transition from our GCN layers to regular
Keras layers.

The GCN layer passes both the
calculated output and the adjacency
matrix to the successive layer.

That’s fine for successive GCN layers.

But we need a special layer to
transition between our GCN layer and
fully-connected layers.

This simple class ignores the incoming
adjacency matrix, and reduces the data
down by taking the mean.

mutag layers.py, continued

class GraphReduction(kl.Layer):

def init (self, **kwargs):

super(GraphReduction, self). init (**kwargs)

def call(self, inputs):

Ignore the adjacency matrix.

Just reduce the inputs.

H, adj = inputs

reduction = tf.reduce mean(H, axis = 1)

return reduction

The data is reduced in dimensionality from
(num nodes, num node features) to
(num node features).

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 20 / 29

Example, getting the data

Getting the data prepared is quite involved. Here is an outline of the steps. These are found in
mutag utilities.py:

The data is scattered across 4 files. The files contain the list of edges, the labels for the
graphs, the labels for the nodes, and which graph each node belongs to.

A data frame containing the nodes, and their associated labels, is built.

The networkx Python package is used to build the graph for each molecule.

This graph is used to build the adjacency matrix for the molecule. The identity matrix is
added to this matrix.

A generator is created, which returns (yields)
I the array of features for each node in a given graph (molecule),
I the adjacency matrix for the graph, and
I the one-hot-encoded category for the graph.

A tensorflow Dataset object is created from this generator.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 21 / 29

Example, getting the data, continued

A special point needs to be made about each data point:

The dimensionality of the incoming data is different for each molecule (graph).

Why? Because the number of nodes (atoms) in each molecule is different.

What are the dimensions of the data?
I the input array is (num nodes, num node features).
I the adjacency matrix has dimension (num nodes, num nodes).

The array of weights is of constants size (num node features, num node features).

We will only be able to run on batches of 1 in this example, since data can only be ’batched’
when each data point has the same dimension.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 22 / 29

Example, building the model

Because there are two
inputs we use Keras’
functional syntax.

The only constant
dimension in the
incoming data is the size
of the one-hot-encoded
node labels.

Note that we only
specify the number of
nodes for the
fully-connected layers.

mutag model.py

import tensorflow.keras.models as km, tensorflow.keras.layers as kl

import mutag layers as ml

def build model(num node labels):

node input = kl.Input(shape = (None, num node labels))

adj input = kl.Input(shape = (None, None))

x = ml.GCNLayer(activation = ’relu’)([node input, adj input])

x = ml.GCNLayer(activation = ’relu’)(x)

x = ml.GCNLayer(activation = ’relu’)(x)

x = ml.GCNLayer(activation = ’relu’)(x)

x = ml.GraphReduction()(x)

x = kl.Dense(16, activation = ’tanh’)(x)

x = kl.Dense(2, activation = ’softmax’)(x)

return = km.Model(inputs = [node input, adj input], outputs = x)

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 23 / 29

Example, driver script

mutag driver.py

import mutag utilities as mu

import mutag model as mm

We need to know the characteristics of the

data before we can build a Tensorflow Dataset.

num node labels = 7

num data = 188

data = mu.create data(num node labels)

num test = round(num data * 0.2)

Put chunks of data into different splits.

test data = data.take(num test)

train data = data.skip(num test)

mutag driver.py, continued

model = mm.build model(num node labels)

print(model.summary())

model.compile(optimization = ’adam’,

loss = ’categorical crossentropy’,

metrics = [’accuracy’])

Note that there is only a single data point

in each batch.

result = model.fit(train data.batch(1),

epochs = 100, verbose = 2)

print(model.evaluate(test data.batch(1)))

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 24 / 29

Our network using Keras, continued

ejspence@mycomp ~> python mutag driver.py

Layer (type) Output Shape Param #

===

input 1 (InputLayer) [(None, None, 7)] 0

input 2 (InputLayer) [(None, None, None)] 0

gcn layer (GCNLayer) ((None, None, 7), (None, None, None)) 49

gcn layer 1 (GCNLayer) ((None, None, 7), (None, None, None)) 49

gcn layer 2 (GCNLayer) ((None, None, 7), (None, None, None)) 49

gcn layer 3 (GCNLayer) ((None, None, 7), (None, None, None)) 49

GRLayer (GraphReduction) (None, 7) 0

dense (Dense) (None, 16) 128

dense 1 (Dense) (None, 2) 34

==

Total params: 358

Trainable params: 358

Non-trainable params: 0

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 25 / 29

~

Our network using Keras, continued

Epoch 1/100

150/150 - 17s - loss: 0.6885 - accuracy: 0.5536

Epoch 2/100

150/150 - 15s - loss: 0.6696 - accuracy: 0.6250

Epoch 3/100

150/150 - 16s - loss: 0.6632 - accuracy: 0.6250

.

.

.

Epoch 98/100

150/150 - 15s - loss: 0.4836 - accuracy: 0.7533

Epoch 99/100

150/150 - 16s - loss: 0.4831 - accuracy: 0.7533

Epoch 100/100

150/150 - 17s - loss: 0.4832 - accuracy: 0.7533

38/38 [==============================] - 6s 15ms/step - loss: 0.5502 - accuracy: 0.8158

[0.5502200126647949, 0.8157894611358643]

ejspence@mycomp ~>

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 26 / 29

~

Example, notes

A few notes about our example.

Obviously, the biggest problem with what we have done here is the use of a batch size of
one, which eliminates any averaging which might occur with each batch.

How could we get around this? The easiest way would be to pad the number of nodes in
the graphs to the largest graph size in the data set.

However, the presence of many zeros in the interaction matrices, and the feature data,
might cause problems.

Another approach is to represent n graphs together in a single block-diagonal adjacency
matrix. This would allow several graphs to be processed simultaneously.

This would be an obvious problem to address if you started working with this family of neural
networks.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 27 / 29

GNNs, other approaches

More-generalized versions of what we have done today have been developed since 2017.

Spectral Graph Convolutions: the matrix representation of matrix operation given earlier
are expanded in terms of Chebyshev polynomials.

A generalization of graph convolutions is known as ”message passing”. This works
similarly to the final custom layer we used in our GNN, but is done within the GCN layer.
The information aggregated from each node’s neighbour is passed through an ”update
function” before being passed to the next layer.

The convolutions which we performed in our GCN layers are a simplified form of message
passing.

These are approaches to explore if you go down this road.

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 28 / 29

Linky goodness

GNN APIs:

https://graphneural.network

https://stellargraph.readthedocs.io

https://github.com/deepmind/graph_nets

https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html

GNNs:

https://arxiv.org/abs/1901.00596

https://distill.pub/2021/gnn-intro

https://cnvrg.io/graph-neural-networks

Erik Spence (SciNet HPC Consortium) Graph neural networks 21 May 2024 29 / 29

https://graphneural.network
https://stellargraph.readthedocs.io
https://github.com/deepmind/graph_nets
https://blog.tensorflow.org/2021/11/introducing-tensorflow-gnn.html
https://arxiv.org/abs/1901.00596
https://distill.pub/2021/gnn-intro
https://cnvrg.io/graph-neural-networks

	Graphs
	Graph neural networks
	A graph as input
	Adjacency matrices

	Graph convolutional networks
	Custom Keras layers

	Example
	Second custom layer
	Other approaches

