
Neural network programming:
generative adversarial networks

Erik Spence

SciNet HPC Consortium

14 May 2024

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 1 / 25

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1327

Click on the link for the class, and look under ”Lectures”, click on ”GANs”.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 2 / 25

https://scinet.courses/1327

Today’s class

This class will cover the following topics:

Generative adversarial networks.

Example.

Please ask questions if something isn’t clear.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 3 / 25

Generative Adversarial Networks (2014)
What are Generative Adversarial Networks (GANs)?

GANs are another type of generative network, introduced by Goodfellow and
collaborators, U. de Montréal.

A GAN consists of two coupled networks, the ”discriminator” and the ”generator”.

The generator takes a latent space vector (random noise) as input, and generates fake
data to be fed into the discriminator.

The discriminator is a standard discriminating neural network.

The system is called ”adversarial” because the two networks are treated as adversaries:
I The discriminator is trained to learn whether a given input, x, is authentic data from a real

data set, rather than fake data created by the generator.
I The generator is trained to try to fool the discriminator into thinking its output comes from

the real data set.

The two networks are trained alternately. Eventually (if all goes well) the output
of the generator will become very similar to that of the input data set.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 4 / 25

GAN schematic

discriminatorinput set

generator

true data set

latent space input

real data?

The discriminator is given a mixed data set of real data from the true data set and fake data
from the generator.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 5 / 25

GANs can do amazing things

https://thispersondoesnotexist.com

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 6 / 25

https://thispersondoesnotexist.com

Training GANs

Training both networks simultaneously must require coupling them together. How is this done?

Let the discriminator, D, take as its input x and has weights and biases θD.

Let the generator, G, take as its input z and has weights and biases θG.

We wish to minimize the discriminator’s cost function CD(θD, θG), but the
discriminator only has control over θD.

Similarly, we wish to minimize the generator’s cost function CG(θD, θG), but the
generator only has control over θG.

Formally, because the two networks are trying to reach an equilibrium, rather than a
minimum, the goal is to find a Nash equilibrium.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 7 / 25

Training GANs, continued

The original algorithm called for Stochastic Gradient Descent (SGD) to train the networks.

At each step, two minibatches are sampled.
I A batch of x values from the true data set.
I A batch of random values z, which are then used to generate fake data, using the generator.

We then perform two steps alternatively.
I We update θD to reduce CD, based on both real and fake data.
I We update θG to reduce CG.

In the original GAN algorithm, the cost function for the discriminator is always the same,
cross-entropy:

CD(θD, θG) = −
1

2

N∑
i

log (D(xi)) −
1

2

N∑
i

log (1 −D(G(zi)))

We have assumed 2N data points in each minibatch, half of which are from the real data set.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 8 / 25

Training GANs, continued more

What cost function do we use for the generator? Several have been proposed.

One option is the ”zero-sum game”: CG = −CD.

Another option is to flip the target used to construct the cross-entropy:

CG = −
1

2

N∑
i

log (D(G(zi))).

The motivation for this function is to ensure that the losing side has a strong gradient.

Maximum likelihood: CG = −
1

2

N∑
i

eσ
−1(D(G(zi)))

Where σ is the usual sigmoid function.

We will use a different approach, where we use the Discriminator’s cost function by training
the Generator through the Discriminator.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 9 / 25

Training failures
As you might at first intuitively expect, training GANs is non-trivial.

Rather than minimizing a cost function, we’re trying to balance two competing
minimizations.

This is, more often than not, unstable.
I The generator can ’collapse’ (fail to generate convincing data) resulting in the discriminator

getting a perfect score.
I The discriminator can converge to zero, and the generator stops training.

Overcoming these problems requires extremely careful choice of hyperparameters.

GANs also suffer from other training problems:

mode collapse: the generator latches on to a single feature of the input data and ignores
all others.

convergence ambiguity: how do we tell if things are converging? There’s no single metric;
the loss values don’t help.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 10 / 25

GAN example

Let’s build a GAN. What problem will we tackle?

Let’s work on our old friend, the MNIST data set.

As you recall, these are 60000 28 x 28 pixel images of hand-written digits, in greyscale.

There are many many types of GANs out there. This one will be a Deep Convolutional
GAN (DCGAN).

The goal will be for the network to generate images of hand-written digits which are
convincing.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 11 / 25

Our discriminator

First we need a discriminator.

The input data is (28 x 28 x 1) (greyscale).

We then put in 4 convolution layers, each of which has a 5 x 5 filter, with strides of 1 or
2, and different numbers of feature maps.

We use the leaky ReLU as the activation function.

Dropout is used on all the layers.

We then flatten the last layer and input it into the output layers, containing 2 neurons.

Recall that the discriminator just needs to indicate whether the input image is real or fake.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 12 / 25

Our discriminator, continued

input layer
(28 x 28 x 1) convolution layer

(28 x 28 x 32)

convolution layer
(14 x 14 x 64)

convolution layer
(7 x 7 x 128)

convolution layer
(7 x 7 x 256)

output

The number of convolutional layer feature maps is given by the third number in the brackets.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 13 / 25

Our discriminator, the code
MNIST gan.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

import tensorflow.keras.utils as ku

import tensorflow.keras.optimizers as ko

def add D layers(in, fm num, stride):

x = kl.Conv2D(fm num,

kernel size = (5, 5),

strides = stride,

padding = "same")(in)

x = kl.LeakyReLU()(x)

x = kl.Dropout(0.3)(x)

return x

Create the discriminator.

def create D():

input image = kl.Input(shape = (28, 28, 1))

x = add D layers(input image, 32, 1)

x = add D layers(x, 64, 2)

x = add D layers(x, 128, 2)

x = add D layers(x, 256, 1)

last = kl.Flatten()(x)

output = kl.Dense(2, activation = "softmax")(last)

model = km.Model(inputs = input image, name = ’D’,

outputs = output)

model.compile(optimizer = ko.Adam(1e-4),

loss = ’categorical crossentropy’)

return model

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 14 / 25

Other activation functions: leaky ReLU

Two commonly-used functions:

Rectifier Linear Units (ReLUs):

f(z) = max(0, z).

Leaky ReLU:

f(z) =

z z > 0

αz z ≤ 0

for α > 0.

Leaky ReLUs have gradients for z < 0,
which is usually advantageous.

4 3 2 1 0 1 2 3 4

z

1

0

1

2

3

4 ReLU

Leaky ReLU

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 15 / 25

Our generator

How shall we construct our generator?

We have a single input, the latent space input (a vector of Gaussian noise).

Feed this into a fully-connected layer.

Reshape the layer’s output into a square.

Repeatedly apply transposed convolution to it, while shrinking the number of feature
maps, until we get to (28 x 28 x 1).

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 16 / 25

Our generator, continued

input (100)

fully-connected
(12544)

deconvolution
(7 x 7 x 256)

deconvolution
(7 x 7 x 128)

deconvolution
(14 x 14 x 64)

deconvolution
(28 x 28 x 32)

deconvolution
(28 x 28 x 1)

output

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 17 / 25

Our generator, the code
MNIST gan.py, continued

def add G layers(in, fm num, stride):

x = kl.Conv2DTranspose(fm num,

kernel size = (5, 5),

padding = "same",

strides = stride)(in)

x = kl.BatchNormalization()(x)

x = kl.LeakyReLU()(x)

return x

def create G():

input z = kl.Input(shape = (100,))

x = kl.Dense(256 * 7 * 7)(input z)

x = kl.BatchNormalization()(x)

x = kl.LeakyReLU()(x)

x = kl.Reshape((7, 7, 256))(x)

x = add G layers(x, 256, 1)

x = add G layers(x, 128, 1)

x = add G layers(x, 64, 2)

x = add G layers(x, 32, 2)

x = kl.Conv2DTranspose(1, (5, 5), padding = "same",

activation = "tanh")(x)

return km.Model(inputs = input z, outputs = x)

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 18 / 25

Training our GAN

The algorithm for training the GAN is as follows.

Create the input layer for the discriminator.

Create the discriminator (D) and generator (G).

Create a combined discriminator-generator (DG) network.

Turn off the training of the discriminator.

Compile the DG network.

Now iterate:
I Create fake data, using G.
I Train D on real and new fake data.
I Turn off training of D.
I Train the combined DG network so as to train G to create authentic images.
I Turn training for D back on.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 19 / 25

Training our GAN, the code

MNIST gan.py, continued

import tensorflow.keras.backend as K

import numpy as np

import numpy.random as npr

Create the generator input layers.

input z = kl.Input(shape = (100,))

Create the networks.

D = create D()

G = create G()

MNIST gan.py, continued

Create the combined network.

output = D(G(inputs = input z))

DG = km.Model(inputs = input z, outputs = output)

Turn off D before compiling.

DG.get layer("D").trainable = False

Compile the generator.

DG.compile(optimizer = ko.Adam(lr = 1e-4),

loss = "categorical crossentropy")

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 20 / 25

Training our GAN, the code, continued
MNIST gan.py, continued

for it in range(num epochs):

for image batch in train dataset:

Turn on D.

D.trainable = True

for l in D.layers: l.trainable = True

Create some fake images.

zz = npr.normal(0., 1., (batch size, 100))

f images = G.predict(zz)

all images = np.concatenate([f images,

image batch])

all cats = np.contatenate([np.zeros(batch size),

np.ones(image batch.shape[0])])

all cats = ku.to categorical(all cats, 2)

MNIST gan.py, continued

Train on the mages.

D loss = D.train on batch(all images,

all cats)

We are done training D. Now train G.

D.trainable = False

for l in D.layers: l.trainable = False

Create some input.

zz = npr.normal(0., 1., (batch size, 100))

Train DG on the fake images.

DG loss = DG.train on batch(zz,

ku.to categorical(np.ones(batch size),2))

Now save the losses and images.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 21 / 25

Training our GAN, running

This takes about 3 hours on a GPU.

ejspence@mycomp ~>
ejspence@mycomp ~> python MNIST gan.py

0: [D loss: 0.039339] [DG loss: 0.055060]

1: [D loss: 0.020271] [DG loss: 0.150696]

2: [D loss: 0.038817] [DG loss: 5.117784]

3: [D loss: 0.365811] [DG loss: 2.477790]
.
.
.

496: [D loss: 0.617432] [DG loss: 1.407433]

497: [D loss: 0.625149] [DG loss: 1.447843]

498: [D loss: 0.621429] [DG loss: 1.181722]

499: [D loss: 0.596228] [DG loss: 1.274543]

ejspence@mycomp ~>

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 22 / 25

~
~
~

Our GAN, results

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 23 / 25

Some final GAN notes

Some notes about the example, and GANs.

This took many attempts to get to work. Training failures aren’t uncommon.

Since the GAN paper was published, man better GAN techniques have been introduced.

There are zillions of variations on the GAN. Check out the ”GAN zoo” if you’re interested.

There is talk of using GANs to replace regular HPC.

The movement in the community is now away from GANs, and toward diffusion networks
instead.

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 24 / 25

Linky goodness

GANs:

https://arxiv.org/abs/1701.00160

https://blog.openai.com/generative-models

https://deephunt.in/the-gan-zoo-79597dc8c347

http://arxiv.org/abs/1511.06434

https://medium.com/towards-data-science/

gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0

https://arxiv.org/abs/1606.03498

https://arxiv.org/abs/1701.07875

Erik Spence (SciNet HPC Consortium) Generative adversarial networks 14 May 2024 25 / 25

https://arxiv.org/abs/1701.00160
https://blog.openai.com/generative-models
https://deephunt.in/the-gan-zoo-79597dc8c347
http://arxiv.org/abs/1511.06434
https://medium.com/towards-data-science/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://medium.com/towards-data-science/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1701.07875

	Generative neural networks
	Generative adversarial networks
	Training GANs
	Training failures

	Example
	Our discriminator
	Leaky ReLU
	Our generator
	Training our example

