
Neural network programming:
neural network frameworks

Erik Spence

SciNet HPC Consortium

30 April 2024

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 1 / 33

Today’s code and slides

You can get the code and slides for today’s class at the SciNet Education web page.

https://scinet.courses/1327

Click on the link for the class, and look under ”Lectures”, click on ”Frameworks”.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 2 / 33

https://scinet.courses/1327

Today’s class

This class will cover the following topics:

Review some of the available neural network frameworks,

Redo the MNIST example using Keras,

Dropout,

Different activation functions, cost functions,

Updated Keras network.

We will be using Keras for the rest of the course. You will need to install it, by installing
Tensorflow. If you have problems, let me know.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 3 / 33

A review of last class

Recall what we did last class.

We built a neural network, consisting of three layers: an input layer, a single hidden layer,
and an output layer.

We defined a cost function, which measured the inaccuracy of the neural network’s
predictions.

We used backpropagation to calculate the derivatives of the cost function with respect to
the weights and biases.

Using gradient descent, we trained the network to identify images from the MNIST data
set.

However, we built all the parts of the network by hand. There are better ways to do this.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 4 / 33

Neural network frameworks

Now that we have a sense of how neural networks work, we’re ready to switch gears and use a
’framework’. Why would we do that?

Coding your own networks from scratch can be a bit of work. (Though it’s easier and
cleaner if you use classes.)

Neural network (NN) frameworks have been specifically designed to solve NN problems.

Python, of course, is not a high-performance language.

The neural networks which are built using frameworks are compiled before being used,
thus being much faster than Python.

The NN frameworks are also designed to use GPUs, which make things significantly faster
than just using CPUs.

The training of neural networks is particularly well suited to GPUs.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 5 / 33

TensorFlow
TensorFlow is Google’s NN framework.

Released as open source in November 2015.

The second-generation machine-learning framework developed internally at Google,
successor to DistBelief.

More flexible than some other neural network frameworks.

Capable of running on multiple cores and GPUs.

Provides APIs for Python, C++, Java and other languages.

Used to be quite a challenge to learn (many ways to do the same thing).

With Tensorflow 2.0, Keras has become the main high-level API. A significant
consolidation of the API was performed.

Will be succeeded by JAX?

This framework was popular, though not necessarily the fastest.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 6 / 33

JAX

JAX is a numpy-like machine learning framework.

Released by Google as open source in 2018.

Designed for high-performance numerical computing.

Easily takes numpy commands and runs them on GPUs, using a just-in-time compiler.

Very fast.

A number of libraries have been built on top of JAX, to extend its capabilities: Flax,
Equinox, RLax, jraph, and others.

This framework is growing in popularity.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 7 / 33

PyTorch
Another framework used for neural networks is PyTorch.

Based on Torch, which was first released in 2002. Quite mature at this point.

PyTorch was released by Facebook in January 2018. This is now the most-commonly
used interface to Torch, though there is also a C++ interface.

PyTorch is more flexible than just NN. It is more of a generic scientific computing
framework.

Very strong on GPUs.

Very fast. Often the fastest depending on the problem being considered.

Used and maintained by Facebook, Twitter and other high-profile companies.

PyTorch Lightning was released recently. This gives a more Keras-like interface to
PyTorch, making it easier to use.

This framework is the other major player, other than Tensorflow.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 8 / 33

Keras

We will use Keras for the rest of this course.

Keras is a NN framework, but it’s only the top-most level.

More accurately, it’s an API standard for creating neural networks.

Designed for fast development of networks.

Runs on top of a ’back end’, which by default is now TensorFlow.

It can currently can run on Tensorflow, Torch or JAX.

Historically it ran on top of many other backends also: Theano, CNTK, MXNet,
TypeScript, JavaScript, PlaidML, Scala, CoreML, and others.

Because it’s a proper framework, all of the NN goodies you need are already built into it.

Because the recommended way is to use Keras through Tensorflow, that is the way we
will be using it.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 9 / 33

Getting the data

Because it is so commonly used, the
MNIST data set is built into most
NN frameworks.

Keras is no different, so we’ll just
grab it from Keras directly.

In [1]:

In [1]: from tensorflow.keras.datasets import mnist

In [2]:

In [2]: (x train, y train), (x test, y test) =

mnist.load data()

In [3]:

In [3]: x train.shape

Out[3]: (60000, 28, 28)

In [4]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 10 / 33

Prepping the data

As with last time, we need the
data in a specific format:

Instead of 28 x 28, we flatten
the data into a 784-element
vector.

We only take the first 500
data points for training, to
be consistent with last class.

The labels must be changed
to a categorical format
(one-hot encoding).

In [4]:

In [4]: import tensorflow.keras.utils as ku

In [5]:

In [5]: x train2 = x train[0:500, :, :].reshape(500, 784)

In [6]: x test2 = x test[0:100, :, :].reshape(100, 784)

In [7]:

In [7]: y train2 = ku.to categorical(y train[0:500], 10)

In [8]: y test2 = ku.to categorical(y test[0:100], 10)

In [9]:

In [9]: y train2.shape

Out[9]: (500, 10)

In [10]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 11 / 33

Our neural network

output

output

inputs

hidden layer
(arbitrary)

input layer
(784)

output layer
(10)

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 12 / 33

Our network using Keras

Let us re-implement our second network
using Keras.

A ”Sequential” model means the layers
are stacked on one another in a linear
fashion.

A ”Dense” (”fully-connected”) layer is
the regular layer we’ve been using.

Use ”input dim” in the first layer to
indicate the shape of the incoming data.

The ”activation” is the output function
of the neuron.

The ”name” of the layer is optional.

model1.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

def get model(numnodes):

model = km.Sequential()

model.add(kl.Dense(numnodes, input dim = 784,

activation = ’sigmoid’, name = ’hidden’))

model.add(kl.Dense(10, name = ’output’,

activation = ’sigmoid’))

return model

In [10]: import model1 as m1

In [11]: model = m1.get model(30)

In [12]: model.output shape

Out[12]: (None, 10)

In [13]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 13 / 33

Our network using Keras, continued

In [13]:

In [13]: model.summary()

Layer (type) Output Shape Param #

===

hidden (Dense) (None, 30) 23550

output (Dense) (None, 10) 310

===

Total params: 23,860

Trainable params: 23,860

Non-trainable params: 0

In [14]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 14 / 33

Our optimization flag

We will use the optimization flag ”sgd”.

This stands for ”Stochastic Gradient Descent”.

This is similar to regular gradient descent that we used previously.
I Regular gradient descent is ridiculously slow on large amounts of data.
I To speed things up, SGD uses a randomly-selected subset of the data (a ”batch”) to update

the weights and biases.
I This is repeated many times, using different batches, until all of the data has been used.

This is called an ”epoch”.

In practice, regular gradient descent is never used, stochastic gradient descent is used
instead, since it’s so much faster.

The only real advantage of regular gradient descent is that it’s easier to code, which is
why I used it in previous classes.

There are many variations on SGD that are also used.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 15 / 33

Our network using Keras, continued more

In [14]:

In [14]: model.compile(optimizer = ’sgd’, metrics = [’accuracy’], loss = "mean squared error")

In [15]:

In [15]: fit = model.fit(x train2, y train2, epochs = 1000, batch size = 5, verbose = 2)

Epoch 1/1000

0s - loss: 0.1963 - acc: 0.1170

Epoch 2/1000

0s - loss: 0.1338 - acc: 0.1720
.
.
.

Epoch 999/1000

0s - loss: 0.0394 - acc: 0.8440

Epoch 1000/1000

0s - loss: 0.0394 - acc: 0.8440

In [16]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 16 / 33

Our network using Keras, notes

Some notes about the compilation of the model.

We must specify the loss (cost) function with the ”loss” argument.

We must specify the optimization algorithm, using the ”optimizer” flag.

The optimizer can be generic (’sgd’), as in this example, or you can specify parameters
using the optimizers in the keras.optimizers module.

I sometimes specify the optimizer explicitly so that I can specify the value of η (using ’lr’,
the ’learning rate’).

The ’metrics’ argument is optional, but is needed if you want the accuracy to be printed.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 17 / 33

Our network using Keras, continued even more

Now check against the test data.

We see the over-fitting rearing its
head (84% versus 62%).

We can do better!

In [16]:

In [17]: score = model.evaluate(x test2, y test2)

In [18]:

In [18]: score

Out[18]: [0.056402873396873471, 0.62]

In [19]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 18 / 33

Over-fitting

Over-fitting occurs when a model is excessively fit to the noise in the training data, resulting in
a model which does not generalize well to the test data.

It commonly occurs when there are too many free parameters (23,860) relative to the number
of training data points (500).

This can be a serious issue with neural networks since it’s trivially easy to have multitudes of
weights and biases. How do we deal with this?

More data! Either real (original), or artificially created.

Regularization.

Dropout.

The first is self-explanatory. We’ll go over dropout today.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 19 / 33

Dropout
Dropout is a uniquely-neural-network technique to prevent over-fitting.

The principle is simple: randomly ”drop out” neurons from the network during each batch
of the stochastic gradient descent.

Like regularization, this results in the network not putting too much importance on any
given weight, since the weights keep randomly disappearing from the network.

It can be thought of as averaging over several different-but-similar neural networks.

Different fractions of different layers can be specified for dropout. A general rule of
thumb is 30 - 50%.

In the final model (after training):
I the neurons in the dropout layer are no longer dropped out, and
I the output from the neurons in the dropout layer is scaled by (1 − p), where p is the

probability of being dropped out.

This form of over-fitting control is quite common to encounter.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 20 / 33

Dropout, visualized

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 21 / 33

Dropout using Keras
model2.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

def get model(numnodes, d rate = 0.4):

model = km.Sequential()

model.add(kl.Dense(numnodes,

input dim = 784, name = ’hidden’,

activation = ’sigmoid’))

model.add(kl.Dropout(d rate,

name = ’dropout’))

model.add(kl.Dense(10, name = ’output’,

activation = ’sigmoid’))

return model

In [19]: import model2 as m2

In [20]: model2 = m2.get model(30, d rate = 0.2)

In [20]: model2.compile(loss = "mean squared error",

...: optimizer = ’sgd’, metrics = [’accuracy’])

In [21]: fit = model2.fit(x train2, y train2,

...: epochs = 1000, batch size = 5, verbose = 2)

Epoch 1/1000

0s - loss: 0.1727 - acc: 0.1600
.
.
.

Epoch 1000/1000

0s - loss: 0.0431 - accuracy: 0.7640

In [22]:

In [22]: model2.evaluate(x test2, y test2)

100/100 [==============================] - 0s

11us/step

Out[22]: [0.05245877802371979, 0.6399999856948853]]

In [23]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 22 / 33

The next steps

We can do better. What’s the plan? There are a few simple approaches:

Use more data.

Change the activation function.

Change the cost function.

Change the optimization algorithm.

Change the way things are initialized.

Add regularization, to try to deal with the over-fitting.

We’ll try some of these next class, but there are also some not-so-simple approaches:

Completely overhaul the network strategy.

We’ll take a look at this on Thursday.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 23 / 33

Training maladies, an aside

There are three main ways that training can fail. Changing the activation function and cost
function can assist with avoiding these modes of failure.

Falling into a local minima.
I Gradient descent in high-dimensional spaces can find local minima, and get stuck in them.
I Some SGD variants will attempt to get unstuck.
I Sometimes you just need to restart your training.

Exploding gradient problem.
I The gradient of the cost function blows up. Finite activation functions can help.

Vanishing gradient problem.
I The gradient of the cost function goes to zero, and training stops.
I This happens in deep networks in particular, because the chain rule of derivatives results in

smaller and smaller final derivatives.
I Certain activation functions are more-prone to this failure mode, sigmoid in particular.
I Techniques have been developed to avoid this problem.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 24 / 33

Other activation functions: relu

Two commonly-used functions:

Rectifier Linear Units (or RELUs):

f(z) = max(0, z).

Softplus:

f(z) = ln(1 + ez).

Good: doesn’t suffer from the
vanishing-gradient problem.

Bad: unbounded, could blow up.

Other variants: leaky RELU, and SELU
(scaled exponential).

4 3 2 1 0 1 2 3 4
z

0

1

2

3

4 Rectifier
Softplus

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 25 / 33

Other activation functions: tanh

Another commonly-used activation function
is tanh:

f(z) = tanh(z).

Good: stronger gradients than sigmoid,
faster learning rate, doesn’t suffer from
the vanishing-gradient problem.

Good: because the function is
anti-symmetric about zero. This also
results in faster learning, at least for
deeper networks.

Bad: the function saturates at large or
small values of z. 4 3 2 1 0 1 2 3 4

z

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 tanh

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 26 / 33

Other activation functions: softmax

One of the more-commonly used output-layer activation functions is the softmax function:

s(zj) =
ezj

N∑
k=1

ezk

,

where N is the number of output neurons. The advantage of this function is that it converts
the output to a probability.

This is the activation function that is always used on the output layer when doing classification.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 27 / 33

Other cost functions: cross entropy

The most-commonly used cost function for
categorical output data is cross entropy:

C = −
1

n

n∑
i

[yi log(ai) + (1 − yi) log(1 − ai)]

Good: the gradient of cross entropy is directly
proportional to the error; learning is faster than
with mean squared error.

Because the output of the network, a,
0 ≤ a ≤ 1, this is always used with the
softmax activation function as output.

y = 1 in the example on the right. 0.0 0.2 0.4 0.6 0.8 1.0
a

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C

Mean Squared
Cross Entropy

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 28 / 33

Our Keras network, revisited

What’s our new strategy for our MNIST neural network?

Use all of the data.

Change our hidden layer activation function to tanh.

Change our output layer activation function to softmax.

Use the cross-entropy cost function.

Use the Adam minimization algorithm.

We won’t add regularization or dropout, as the data set is larger than the number of
parameters in the model.

Using regular stochastic gradient descent would also probably work. Using the rectifier linear
unit activation function on the hidden layer is also an option.

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 29 / 33

Our Keras network, revisited

model3.py

import tensorflow.keras.models as km

import tensorflow.keras.layers as kl

def get model(numnodes):

model = km.Sequential()

model.add(kl.Dense(numnodes,

input dim = 784, name = ’hidden’,

activation = ’tanh’))

model.add(kl.Dense(10, name = ’output’,

activation = ’softmax’))

return model

In [23]:

In [23]: x train.shape

Out[23]: (60000, 28, 28)

In [24]: x test.shape

Out[24]: (10000, 28, 28)

In [25]:

In [25]: x train = x train.reshape(60000, 784)

In [26]: x test = x test.reshape(10000, 784)

In [27]:

In [27]: y train = ku.to categorical(y train, 10)

In [28]: y test = ku.to categorical(y test, 10)

In [29]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 30 / 33

Our Keras network revisited, continued

In [29]: import model3 as m3

In [30]: model3 = m3.get model(30)

In [31]:

In [31]: model3.compile(loss = "categorical crossentropy", optimizer = "adam",

...: metrics = [’accuracy’])

In [32]:

In [32]: fit = model3.fit(x train, y train, epochs = 100, batch size = 128, verbose = 2)

Epoch 1/100

2s - loss: 0.0688 - acc: 0.4576

Epoch 2/100

2s - loss: 0.3661 - acc: 0.7246
.
.
.

Epoch 100/100

2s - loss: 0.0103 - acc: 0.9338

In [33]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 31 / 33

Our Keras network revisited, continued more

Now check against the test data.

93%! Better!

In [33]:

In [33]: score = model3.evaluate(x test, y test)

In [34]:

In [34]: score

Out[34]: [0.010993927612225524, 0.92949999999999999]

In [35]:

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 32 / 33

Linky goodness

Keras:

https://keras.io

Other frameworks:

https://github.com/Theano/Theano

https://github.com/pymc-devs/aesara

https://www.tensorflow.org

https://pytorch.org

http://torch.ch

http://caffe.berkeleyvision.org

Erik Spence (SciNet HPC Consortium) Neural network frameworks 30 April 2024 33 / 33

https://keras.io
https://github.com/Theano/Theano
https://github.com/pymc-devs/aesara
https://www.tensorflow.org
https://pytorch.org
http://torch.ch
http://caffe.berkeleyvision.org

	Frameworks
	TensorFlow
	PyTorch

	Keras
	Keras MNIST data
	Our network with Keras
	Stochastic gradient descent

	Over-fitting
	Dropout
	Other activation functions
	Other cost functions
	Our Keras network, again

