
Neural network programming:
neural networks

Erik Spence

SciNet HPC Consortium

25 April 2024

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 1 / 27

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1327

Click on the link for the class, under ”Lectures” click on ”Neural Networks”.

The code for today is in ”lecture2 code.tar.gz”. The data is in ”mnist.pkl.gz”.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 2 / 27

https://scinet.courses/1327

Today’s class

This class will cover the following topics:

Introduction to fully-connected neural networks.

Backpropagation algorithm.

Example with fake data.

Example on the MNIST data.

Please ask questions if something isn’t clear.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 3 / 27

A review of last class

Recall what we did last class.

We built a neural network, consisting of a single neuron.

We defined a cost function, C, which measured the inaccuracy of the neural network’s
predictions.

We created data that came in the form (x, y), so that we could perform supervised
learning.

We used a minimization algorithm, Gradient Descent, to minimize the cost function, using
the data. The minimization was accomplished by modifying the neuron’s weights and bias.

We then tested the resulting network against the test data.

This was a good start, but now it’s time to do real neural networks.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 4 / 27

Neural networks
Suppose we combine many neurons together, into a proper network, consisting of ”layers”.

output

output

output

inputs

hidden layersinput layer output layer

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 5 / 27

Some notes about neural networks

Some details about the graphic on the previous slide:

The input neurons do not contain any functions. They merely represent the input data
being fed into the network. There is one input neuron for each ”feature” in the data set
(x1 and x2, for example).

Each neuron in the ”hidden” layers and the output layer all contain an ”activation
function” (such as sigmoid) with its own free parameters, w and b.

Each neuron outputs a single value. This output is passed to all of the neurons in the
subsequent layer. This type of layer is known as a ”fully-connected”, or ”dense”, layer.

The number of free parameters in the neurons in any given layer depends upon the
number of neurons in the previous layer.

The output from the output layer is aggregated into the desired form to calculate the cost
function.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 6 / 27

Seriously?

You might legitimately wonder why on Earth we would think this would lead anywhere.

As it happens, this topology is similar to some simple biological neural networks.

Each layer takes the output of the previous layer as its input.

Each layer makes ”decisions” about the information that it receives.

In this way the later layers are able to make more complex and abstract decisions than the
earlier layers.

A many-layered network can potentially make sophisticated decisions.

However, there are subtleties in training such a network.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 7 / 27

Training a neural network

How do we train such a network?

Suppose that we decide to try to use gradient descent to train the network from three
slides ago.

Each of the neurons has its own set of free parameters, w and b. There are lots of free
parameters!

To update the parameters we need to calculate every ∂C
∂w

and ∂C
∂b

for every weight and
bias, in every neuron!

But how do we calculate those derivatives, especially for the parameters associated with
the neurons that are several layers away from the output?

Actually, as it happens, this is a solved problem.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 8 / 27

The backpropagation algorithm

To find the gradients of the cost function with respect to the weights and biases we use the
”backpropagation algorithm”. First let’s go over some terminology.

Let the input layer be the zeroth layer. If x ∈ R500×2 is the input data, then let
a1 ∈ Rm1×500 be the vector of outputs from the m1 neurons in the first (hidden) layer:

z1 = w1x
T + b1 a1 = σ (z1)

with w1 ∈ Rm1×2, b1 ∈ Rm1×1 and σ(z) the sigmoid function. Similarly,

z` = w`a`−1 + b` a` = σ (z`)

with w` ∈ Rm`×m(`−1) , b` ∈ Rm`×1, a` ∈ Rm`×500, where m` is the number of neurons
in the `th layer.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 9 / 27

The backpropagation algorithm, continued

δM =
∂C

∂zM
= ∇aMC ◦ σ′ (zM)

is the ”error” in the last (M th) layer.
Recall that

C = 1
2

∑
i (aMi − yi)2,

and thus

δM = (aM − y) ◦ σ′ (zM).

We now claim that

δ` =
[
(w`+1)

T δ`+1

]
◦ σ′ (z`)

Some algebra reveals that

∂C

∂b`
= δ`

and that

∂C

∂w`
= a`−1δ`

The derivation of these quantities is not too
difficult, just algebra.

Note that we are now using aM as the output of
our network.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 10 / 27

Our second example

We use the sklearn.datasets.make circles command to generate some toy data.

example2.py

import sklearn.datasets as skd, sklearn.model selection as skms

def get data(n):

pos, value = skd.make circles(n, noise = 0.1)

return skms.train test split(pos, value, test size = 0.2)

In [1]: import example2 as ex2, plotting routines as pr

In [2]:

In [2]: train pos, test pos, train value, test value = ex2.get data(500)

In [3]:

In [3]: pr.plot dots(train pos, train value)

In [4]:

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 11 / 27

Our second example, data

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 12 / 27

The goal

What are we trying to accomplish?

Just like with our first example, we want to create a network which, given a 2D position,
can correctly classify the data point (0 or 1).

However, obviously a linear fit will not work in this case.

This time we will create a network with three layers, an input layer, one hidden layer, and
an output layer.

We will use the sigmoid function for all neurons, with the 2 values of the position
variable, (x1, x2), as the inputs to the hidden layer, and the outputs of the hidden layer
as inputs to the output layer.

Once again, we’ll use gradient descent to minimize the cost function, to find the best
values of our weights and biases.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 13 / 27

Our neural network
Note that the number of neurons in the hidden layer is arbitrary.

output

output

inputs

hidden layerinput layer output layer

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 14 / 27

Training our network, code

second network.py

import numpy as np

import numpy.random as npr

Sigmoid function.

def sigma(z):

return 1. / (1. + np.exp(-z))

Sigmoid prime function.

def sigmaprime(z):

return sigma(z) * (1. - sigma(z))

Returns just the predicted values.

def predict(x, model):

_, _, _, a2 = forward(x, model)

return np.argmax(a2, axis = 0)

second network.py, continued

Predict the output value, given the model

and the positions.

def forward(x, model):

Hidden layer.

z1 = model[’w1’].dot(x.T) + model[’b1’]

a1 = sigma(z1)

Output layer.

z2 = model[’w2’].dot(a1) + model[’b2’]

a2 = sigma(z2)

return z1, z2, a1, a2

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 15 / 27

Training our network, code, continued
second network.py, continued

def build model(num nodes, x, y, eta, output dim, num steps = 10000, print best = True):

input dim = np.shape(x)[1]

model = {’w1’: npr.randn(num nodes, input dim), ’b1’: np.zeros([num nodes, 1]),

’w2’: npr.randn(output dim, num nodes), ’b2’: np.zeros([output dim, 1])}

z1, z2, a1, a2 = forward(x, model)

for i in range(0, num steps):

delta2 = a2; delta2[y, range(len(y))] -= 1 # (a M - y); delta2 *= sigmaprime(z2)

delta1 = (model[’w2’].T).dot(delta2) * sigmaprime(z1)

dCdb2 = np.sum(delta2, axis = 1, keepdims = True)

dCdb1 = np.sum(delta1, axis = 1, keepdims = True)

dCdw2 = delta2.dot(a1.T); dCdw1 = delta1.dot(x)

model[’w1’] -= eta * dCdw1; model[’b1’] -= eta * dCdb1

model[’w2’] -= eta * dCdw2; model[’b2’] -= eta * dCdb2

Then check for best fit, and rerun the forward pass through the model.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 16 / 27

Our second example, continued
Once again, assume that we’ve still got our data in memory.

In [4]: import second network as sn

In [5]:

In [5]: model = sn.build model(10, train pos, train value, eta = 5e-3, output dim = 2)

Best by step 0: 51.2 %

Best by step 1000: 85.0 %

Best by step 2000: 86.0 %

.

.

.

Best by step 7000: 87.2 %

Best by step 8000: 87.2 %

Best by step 9000: 87.2 %

Our best model gets 87.5 percent correct!

In [6]:

In [6]: pr.plot decision boundary(train pos, train value, model, sn.predict)

In [7]:

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 17 / 27

Our fit

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 18 / 27

Our second example, test data

In [7]:

In [7]: f = sn.predict(test pos, model)

In [8]:

In [8]: sum(f == test value) / len(test value)

Out[8]: 0.82999999999999

In [9]:

83%!

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 19 / 27

Some notes on our second example

A few observations about our second example.

The choice of η was by trial-and-error. There are more-sophisticated techniques which
can be used. We may discuss these in a later class.

Our model has as many free parameters as you like, depending on the number of nodes
you use. As such, it is capable of getting an extremely good fit.

It is not uncommon for the number of parameters in the network to greatly exceed the
number of observations. Your machine-learning instincts should be warning you: this
situation is ripe for over-fitting.

Nonetheless, there are techniques that are used to improve the generalization of the
model. We’ll visit these next class.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 20 / 27

Handwritten digits

One of the classic datasets on which to test neural-network techniques is the MNIST dataset.

A database of handwritten digits, compiled by NIST.

Contains 60000 training, and 10000 test examples.

The training digits were written by 250 different people; the test data by 250 different
people.

The digits have been size-normalized and centred.

Each image is grey scale, 28 x 28 pixels.

We can use our existing code to classify these digits.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 21 / 27

Our network

How would we design a network to analyse this data?

Each image is 28 x 28 = 784 pixels. Let the input layer consist of 784 input nodes. Each
entry will consist of the grey value for that pixel.

The output will consist of a one-hot-encoding of the networks analysis of the input data.
This means that, if the input image depicts a ’7’, the output vector should be
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0].

Thus, let there be 10 output nodes, one for each possible digit.

To start, let’s just use a single hidden layer.

As it happens, the code which we used in the second example can solve this problem.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 22 / 27

Hand written digits, continued
The code for reading the data is contained in mnist loader.py.

In [9]: import mnist loader

In [10]:

In [10]: train x, test x, train y, test y = mnist loader.load mnist 1D small(’mnist.pkl.gz’)

In [11]:

In [11]: train x.shape

Out[11]: (500, 784)

In [12]: model = sn.build model(30, train x, train y, output dim = 10,

...: eta = 5e-4, num steps = 20000) # Takes about 1 minute.

Best by step 0: 10.8 %

Best by step 1000: 46.4 %

Best by step 2000: 59.2 %

.

.

.

Best by step 19000: 85.6 %

Our best model gets 85.8 percent correct!

In [13]:

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 23 / 27

Handwritten digits, test data

In [13]:

In [13]: test x.shape

Out[13]: (100, 784)

In [14]:

In [14]: f = sn.predict(test x, model)

In [15]:

In [15]: sum(f == test y) / len(test y)

Out[15]: 0.58999999999999997

In [16]:

In [16]: # number of parameters in the model

In [17]: (784 + 1) * 30 + (30 + 1) * 10

Out[17]: 23860

In [18]:

59%! Not great. Clearly we have some over-fitting going on. How do we deal with this?

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 24 / 27

Over-fitting

Over-fitting occurs when a model is excessively fit to noise in the training data, resulting in a
model which does not generalize well to the test data. This most-often occurs when there are
more free parameters in the model than there are data.

This can be a serious issue with neural networks. How do we deal with this?

More data! Either real (original), or artificially created.

Regularization.

Dropout.

The first is self-explanatory. We’ll go over dropout next week.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 25 / 27

Summary

Things to remember from today’s class.

Neural networks are built out of collections of neurons.

Such networks are organized into layers: an input layer, an output layer, and an arbitrary
number of hidden layers.

Backpropagation is used to calculate the derivatives of the cost function with respect to
the weights and biases.

These derivatives are used in the Gradient Descent algorithm.

Neural networks are prone to overfitting, especially when trained on an insufficient
amount of data.

This is the last time we will code the network details by hand.

We’ll be using Tensorflow next class.

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 26 / 27

Linky goodness

Introductory Neural network classes:

http://neuralnetworksanddeeplearning.com

Backpropagation:

http://colah.github.io/posts/2015-08-Backprop

http://cs231n.github.io/optimization-2

Erik Spence (SciNet HPC Consortium) Neural networks 25 April 2024 27 / 27

http://neuralnetworksanddeeplearning.com
http://colah.github.io/posts/2015-08-Backprop
http://cs231n.github.io/optimization-2

	Neural networks
	Backpropagation

	Second example
	Our network
	code
	Handwritten digits
	Over-fitting

