
Neural network programming:
introduction

Erik Spence

SciNet HPC Consortium

23 April 2024

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 1 / 27

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1327

Click on the link for the class, and look under ”Lectures”, click on ”Introduction”.

The code for today is in ”lecture1 code.tar.gz”.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 2 / 27

https://scinet.courses/1327

About this class, SciNet’s DAT112

The purpose of this class is to introduce you to basic and intermediate neural network
programming in Python. Some notes about the class:

The material will start introductory and then build up to cover more-advanced topics.

We’ll meet Tuesdays and Thursdays, 11:00am - 12:00pm, online only, for six weeks.

All classes will be recorded, and the lecture material made available.

There will be 3 assignments, which will be due the week after they are assigned. The first
will be assigned in the second week.

This class qualifies for 16 credits toward a SciNet Data Science Certificate.

Note that this is a SciNet class. It is not an official University of Toronto class. If you ever
have questions, please email

courses@scinet.utoronto.ca

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 3 / 27

mailto:courses@scinet.utoronto.ca

About this class, continued

Software requirements for this class:

I’ll be using Python 3.10.12. Python 3.7–3.9, 3.11, 3.12 will also likely work. The code
may work with Python 2.7.X, but no promises.

I won’t be teaching Python syntax explicitly, unless asked.

Starting class 3 we’ll be using the Keras neural-network programming framework, which is
now built into Tensorflow. I will be using Tensorflow 2.10.0.

You will need the usual machine-learning packages: numpy, matplotlib, scikit-learn.

The first 4 classes we will cover the basics of how neural networks work. The rest of the
course will be a survey of many of the types of neural networks. Ask questions!

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 4 / 27

Class topics

This class will cover the following topics:

Introduction to neural networks.

Programming neural networks using Keras.

Various computer vision topics, using neural networks.

Various types of generative networks.

Graph neural networks.

Recurrent Neural Networks, Attention networks.

And more...

If there’s a type of neural network you’d like to see covered, please let me know.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 5 / 27

Today’s class

Today’s class will cover the following topics:

Motivation for neural networks.

Neurons.

Gradient descent optimization.

Training example.

Please ask questions if something isn’t clear.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 6 / 27

Neural networks are commonplace

Neural networks are particularly good at detecting patterns, and for certain problems perform
better than any other known class of algorithm. Neural networks are used for

Image recognition, object detection.

Natural language processing (voice recognition).

Novelty detection (detection of outliers).

Next-word predictions.

Text sentiment analysis.

System control (self-driving cars).

Medical diagnosis.

Neural networks are finding their way into everything.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 7 / 27

Neural networks, motivation

Consider the problem of hand-written digit recognition:

How would you go about writing a program which can tell you what digits are displayed?

All the algorithms you might use to describe what a given number ”looks like” are
extremely difficult to implement in code. Where do you even start?

And yet humans can easily tell what these digits are.

This is one of the classic problems which have been solved using neural networks.

Again, anywhere patterns show up, neural networks can be used.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 8 / 27

Neural networks, the approach

Rather than focus on the details of what individual numbers look like, we will instead ignore
those details altogether. We will use a supervised machine-learning approach:

Break the dataset of numbers into two or three groups: training, testing, and optionally
validation.

Feed the training data to the neural network and train it to recognize one number from
another.

Let the neural network figure out the details for itself.

By the end of lecture 4 you will be achieving greater than 99% classification accuracy from
your neural network on the hand-written digits data set.

But first, let’s start with the basics.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 9 / 27

Neurons
Neural networks are built upon ”neurons”. This is just a fancy way of saying a ”function that
takes multiple inputs and returns a single output”.

neuron

x1

x2

x3

y

The function, called the ”activation function”, which the neuron implements is up to the
programmer, but it must contain free parameters so that the network can be trained. These
functions take the form

f(x1, x2, x3) = f

(
3∑

i=1

wixi + b

)
= f (w · x + b)

Where w are the ’weights’ and b is the ’bias’. These are the trainable parameters.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 10 / 27

Neurons, continued more

What function should we use for f? One introductory function that is often used is the
”sigmoid function” (also called the ”logistic function”).

σ(z) =
1

1 + e−z

And so our neuron function becomes

f(x1, x2, x3) = f (w · x + b) =
1

1 + e−(w·x+b)

Where w are again the ’weights’ and b is the ’bias’. Other functions are also an option, as
we’ll see later in this course.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 11 / 27

Why the sigmoid function?

8 6 4 2 0 2 4 6 8

z

0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

Because it ranges from 0 to 1 smoothly.
Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 12 / 27

Training our neuron

How do we optimize our neuron’s weights and biases? We need to define some sort of ”cost
function” (sometimes called ”loss” or ”objective” function):

C =
1

2

∑
i

(f(w · xi + b)− yi)2

where yi are the correct answers, based on the data, associated with each xi. Here we are
using the ”quadratic” cost function.

We then use an optimization algorithm to search for the minimum of C, given x and y.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 13 / 27

Our first example
We use the sklearn.datasets.make blobs command to generate some toy data.

example1.py

import sklearn.datasets as skd, sklearn.model selection as skms

def get data(n):

pos, value = skd.make blobs(n, centers = 2, center box = (-3, 3))

return skms.train test split(pos, value, test size = 0.2)

In [1]: import example1 as ex1, plotting routines as pr

In [2]:

In [2]: train pos, test pos, train value, test value = ex1.get data(500)

In [3]:

In [3]: train pos.shape, train value.shape, train pos[0], train value[0]

Out[3]: ((400,2), (400,), array([2.10552892, 1.31996395]), 1)

In [4]:

In [4]: pr.plot dots(train pos, train value)

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 14 / 27

Our data

1 0 1 2 3 4 5
4

3

2

1

0

1

2

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 15 / 27

The goal

What are we trying to accomplish?

We want to create a neural network which, given a 2D position, can correctly classify the
data point (0 or 1).

To keep things simple, we will begin with a one-neuron network.

We will use the sigmoid function for our neuron, with the 2 values of the position
variable, (x1, x2), as the inputs.

We will use a technique called ”Gradient Descent” to minimize the cost function, and find
the best value of w1, w2 and b.

f(x1, x2) =
1

1 + e−(w1x1+w2x2+b)
=

1

1 + e−((w1,w2)·(x1,x2)+b)

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 16 / 27

Gradient Descent

So, again, how do we train our network? We are trying to minimize our cost function:

C =
∑
i

Ci =
1

2

∑
i

(f(w · xi + b)− yi)2

=
1

2

∑
i

(
1

1 + e−((w1,w2)·(x1,x2)i+b)
− yi

)2

Where, again, the yi are the correct classifications for each (x1, x2)i.

We will use an optimization algorithm called ’gradient descent’. The idea behind gradient
descent is to calculate the gradient of our cost function, with respect to the weights and
biases, and then move ”downhill”.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 17 / 27

Gradient descent, continued

Suppose that our function has only one
parameter.

C = w2

and we wish to minimize the function. Gradient
descent says to move according to the formula:

wj+1 = wj − η
∂C

∂wj

where j is the iteration number and η is called
the step size. We then repeat until some
stopping criterion is satisfied.

If we have multiple parameters (weights and
biases), we step them all.

4 2 0 2 4
w

0

5

10

15

20

25

C

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 18 / 27

Gradient Descent, continued more

fi =
1

1 + e−((w1,w2)·(x1,x2)i+b)

C =
∑
i

Ci =
∑
i

1

2
(fi − yi)2

So to find the minimum of our cost function, we need

∂C

∂w1
=
∑
i

(fi − yi) fi (1− fi)x1i
∂C

∂w2
=
∑
i

(fi − yi) fi (1− fi)x2i

∂C

∂b
=
∑
i

(fi − yi) fi (1− fi)

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 19 / 27

Gradient Descent, continued even more

So now

w1 → w1 − η
∑
i

(fi − yi) fi (1− fi)x1i

w2 → w2 − η
∑
i

(fi − yi) fi (1− fi)x2i

b→ b− η
∑
i

(fi − yi) fi (1− fi)

fi =
1

1 + e−((w1,w2)·(x1,x2)i+b)

Now we’re ready tackle the problem!

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 20 / 27

Training our neuron, code
first network.py

import numpy as np, numpy.random as npr

def sigma(x, model):

z = model[’w1’] * x[:,0] + \

model[’w2’] * x[:,1] + \

model[’b’]

return 1. / (1. + np.exp(-z))

def build model(x, y, eta, num steps = 10000,

print best = True):

model = {’w1’: npr.random(),

’w2’: npr.random(),

’b’ : npr.random()}
scale = 100. / len(y)

best = 0.0

f = sigma(x, model)

for i in range(0, num steps):

Calculate derivatives.

dCdw1 = sum((f - y) * f * (1 - f) * x[:,0])

dCdw2 = sum((f - y) * f * (1 - f) * x[:,1])

dCdb = sum((f - y) * f * (1 - f))

Update parameters.

model[’w1’] -= eta * dCdw1

model[’w2’] -= eta * dCdw2

model[’b’] -= eta * dCdb

f = sigma(x, model)

score = sum(np.round(f) == y) * scale

if (score > best):

best, bestmodel = score, model.copy()

Print out, if requested.

return bestmodel

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 21 / 27

Our first example, continued
Assume that we’ve still got our data in memory.

In [5]: import first network as fn

In [6]:

In [6]: model = fn.build model(train pos, train value, eta = 5e-5)

Best by step 0: 48.0 %

Best by step 1000: 87.2 %

Best by step 2000: 87.2 %

.

.

.

Best by step 7000: 87.2 %

Best by step 8000: 87.2 %

Best by step 9000: 87.2 %

Our best model gets 87.2 percent correct!

In [7]:

In [7]: pr.plot decision boundary(train pos, train value, model, fn.predict)

In [8]:

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 22 / 27

Our fit

1 0 1 2 3 4 5
4

3

2

1

0

1

2

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 23 / 27

Our first example, test data

In [8]:

In [8]: import numpy as np

In [9]:

In [9]: f = fn.predict(test pos, model)

In [10]:

In [10]: sum(np.round(f) == test value) / len(test value)

Out[10]: 0.88026315789473684

In [11]:

88%!

This results for this example are strongly dependent on how separated your data’s blobs are.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 24 / 27

Some notes on our first example

A few observations about our first example.

Our model only has three free parameters, w1, w2, b. As such, it is only capable of a
linear fit, for data with two independent variables.

The reason why the fit worked as well as it did is because I separated the data enough
that a linear split would be a reasonable thing to do.

Depending on how well your data were split, your result may not have been as good.

Note that using gradient descent wasn’t even necessary, as we could have just used Least
Squares to solve this particular problem exactly.

If we want to be able to categorize more-complex data, such as hand-written digits, we’re
going to need a more-complex approach.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 25 / 27

But wasn’t that just logistic regression?

In actual fact, all we did was just a very long-winded version of logistic regression.

As mentioned earlier, the ”logistic function” (the sigmoid function) is used to perform
’logistic regression’.

Logistic regression is a standard classification algorithm.

Normally you would use the logistic regresssion model built into sklearn.linear model,
rather than code it yourself.

The purpose of doing it the long way was to introduce the concepts of
I a cost function
I minimization algorithms (gradient descent)

When we build proper neural networks, with more than one neuron, things will get
considerably more complicated.

We’re laying the ground work for much bigger things.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 26 / 27

Summary

A summary of today’s class.

Neural networks are used for pattern recognition, often exceeding human performance.

Neurons are just (nonlinear) functions. These functions contain trainable weights and
biases.

We use a loss function to measure the inaccuracy of a given neural network, for some
data set.

Gradient descent, and its variations, is commonly used to optimize the neural network’s
weights and biases, by minimizing the loss function.

We will continue developing these ideas next class.

Erik Spence (SciNet HPC Consortium) Introduction 23 April 2024 27 / 27

	About this class
	Motivation for neural networks
	Neurons
	The sigmoid function

	Our first example
	The goal
	Gradient descent
	Code

