
Storage and I/O in Large Scale Scientific Projects

Ramses van Zon and Marcelo Ponce

May 17, 2017

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 1 / 128

Outline of the course

1 Intro to Storage & Performance

2 Performance Tuning

3 File Formats

4 Data Management

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 2 / 128

Section 1

Intro to Storage & Performance

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 3 / 128

Data deluge

The amount of data available and generated is growing at break-neck speed.

This data has to be processed and stored.

The capacity and speed of data storage and data access have not kept up with the increase in data
volume.

This can cause the storage and retrieval to become a bottleneck in your projects (even if your data
is not necessarily big).

We will show you common bottlenecks in data storage and handling, and how you can alleviate them in
many cases.

Let’s look at some cases of ‘big data’. . .

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 4 / 128

Bioinformatics as an example of Big Data

Bioinformatics is a broad area of research

Next Gen Sequencing

Data Analysis

Alignment

Assembly

Simulation

Common features

Often involves a lot of little bits of data

Involves a lot of analysis

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 5 / 128

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 6 / 128

Bioinformatics & HPC

Suitable for Typical HPC Systems?

Typical HPC cluster:

Optimized for parallel, floating point calculations.

Memory per core typically modest (1-3 GB).

High performance network within cluster.

Good external transfer rates only if good from end to end.

Disk storage optimized for large contiguous blocks of data.

Disk system often the least optimized.

Shared resource.

For HPC to solve large bioinformatics questions requires some rethinking.

Different applications may have quite different optimal workflows, but the boundary conditions remain
the same.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 7 / 128

Molecular biophysics

. . . another broad category

Complex molecules

Dynamical behaviour to be simulated over time scales that require many millions of time steps
(e.g., protein folding, ion translocation)

Often vast parameter space

The properties holds for other projects too, if they involve complex many-body simulations.

Common features
Large parameter space

Lots of output data (trajectories)

That then requires analysis

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 8 / 128

Astrophysics

Telescopes: large quantities of images are produced;

Gravitational wave detectors (e.g. LIGO): large numbers of ’waveforms’ to be produced and
analyzed.

Data is sizable

Filters may have to be applied on each sample/image

Images may have to be ’stitched’ together (WMAP)

Until processed, large amount of data to be stored.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 9 / 128

Medical physics

Imaging

Large quantities of images are produced (MRI);

Data is sizable;

Filters may have to be applied on each;

Images may have to be ’stitched’ together (maps, 3d imaging, . . .).

Until processed, large amount of data to be stored.

DNA screening

See bioinformatics.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 10 / 128

Digital Humanities and Social Studies

Digital Humanities

Many books, articles, etc., have been digitized, and could be searchable for a variety of research
goals.

Social media generates a lot of data

Getting the information out, i.e., the apropriate analysis, is challenging.

Automation can also generate large sample sizes than before.

Similarity of Symbol Frequency Distributions with Heavy Tails – Phys. Rev. X 6, 021009 (2016), Gerlach,

Font-Clos, and Altmann

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 11 / 128

http://physics.aps.org/articles/v9/41
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.021009

Common Computational Challenges:

Workflow

What gets done, with what data, in what sequence (or in parallel), and what tasks or items can share
resources?

Data Management and Data Transport

What goes where, how fast, how big is it, what is the format?

Throughput

Regardless of the speed of workflow components, what matters is how much data we get to process per
second (or per Watt).

Of course these concerns are valid for any large scale scientific computation, but the pace at which data
gets produced in data-driven fields makes them more pressing.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 12 / 128

Computational Infrastructure

File systems

Modern computers (CPU, RAM, DISK)

Supercomputers

Networks

Storage (and ’clouds’)

Linux

Schedulers

In this workshop, we will focus on I/O, which is often the bottleneck.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 13 / 128

Why is I/O a bottleneck?

Your data may live on disk, or tape, or come from the internet/cloud.
Processing occurs on the CPU. For data to get there, it has to go through the Memory/Storage
Hierarchy

Location Latency Speed
CPU 300 ps
Cache 5 ns 50 GB/s
RAM 60 ns 10 GB/s
Infiniband 1µs 6 GB/s
Flash 20µs 200 MB/s
Ethernet (1Gb) 50µs 100 MB/s
Hard Drives 5 ms 100 MB/s
Shared File System 10 ms 10 MB/s
Tape 1 h 80 MB/s
Internet 100 ms 100 MB/s

(beware: very approximate numbers!)

100 – 1000 fold difference between how fast your data
could be processed by the CPU and how fast the data can
get there!

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 14 / 128

File I/O

File systems

It’s where we keep most data.

Typically spinning disks

Logical structure: directories, subdirectories and files.

On disk, these are just blocks of bytes.

Each I/O operation (IOPS) gets hit by latency.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 15 / 128

File I/O

What are I/O operations, or IOPS?

Finding a file (ls)
Check if that file exists, read metadata (file size, date stamp etc.)

Opening a file:
Check if that file exists, see if opening the file is allowed, possibly create it, find the block that has
the (first part of) the file system.

Reading a file:
Position to the right spot, read a block, take out right part

Writing to a file:
Check where there is space, position to that spot, write the block.
Repeated if the data read/written spans multiple blocks.

Move the file pointer (“seek”):
File system must check were on disk the data is.

Close the file.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 16 / 128

Parallel file system at a glance

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 17 / 128

File system at Supercomputer Centres such as SciNet

Taking SciNet as an example:

1,790 1TB SATA disk drives, for a total of 1.4PB

Two DCS9900 couplets, each delivering:

4-5 GB/s read/write access (bandwidth)
30,000 IOP/s max (open, close, seek, . . .)

Single GPFS file system shared on most systems

I/O goes over the network

File system is parallel!

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 18 / 128

Example: File system limits at SciNet

location quota block-size time-limit backup devel comp

/home 50GB 256kB unlimited yes rw ro
/scratch 20TB 4MB 3 months no rw rw

There are quotas

Home read-only from compute nodes!

Big block sizes: small files waste space

Issues are common to parallel file systems (Lustre, etc.)
present in most modern supercomputers.

Scratch quota per user oversubscribes disk space, so only for when you temporarily really needs a
lot of disk space.

Most users will need much less.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 19 / 128

The file system is parallel, what does that mean?

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 20 / 128

Shared file system

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 21 / 128

Shared file system

Optimal for large shared files.

Behaves poorly under many small reads and writes.

Your use of it affects everybody!
(Different from case with CPU and RAM if scheduling is by node.)

How you read and write, your file format, the number of files in a directory, and how often you ls,
can all affect every other user!

File systems are not infinite!
Bandwidth, metadata, IOPS, number of files, space, . . .

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 22 / 128

Shared file system
Think of your laptop/desktop with several people simultaneously doing I/O, doing ls on directories
with thousands of files . . .

2 jobs doing simultaneous I/O can take much longer than twice a single job duration due to disk
contention and directory locking.

E.g. @SciNet: >100 users doing I/O from 4000 nodes.
That’s a lot of sharing and contention!

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 23 / 128

Some Numbers

SciNet’s scratch, which is meant for temporary space:

1.8 PB TB on scratch

> 100 active users, but > 800 users total.

Would prefer >25% free at any given time.
(systems can write 0.5 PB per day)

But experience shows that all space eventually gets filled.

100 MB/s: maximum possible read/write speed from a node if there is nothing else running on
system

When system is fully utilized:

1 MB/s: average expected read/write speed from a node

10 IOP/s: average expected iops from a node
So can’t open more than 10 files in a second!

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 24 / 128

Conclusion:

The I/O part of your project needs as much attention as
your algorithms and workflows.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 25 / 128

Next: Scripting Review

Why? Because we can often improve our I/O by changing our workflow, using scripts.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 26 / 128

Scripting is . . .

Automating tasks. . .

Reproducable

Debuggable and scalable

At a high level. . .

Easy to learn

Should be easy to read

Using an interpreted language (typically)

No need to compile, but slow

Text based: easy to check

Many choices: bash, zsh, tcsh, perl, python, ruby.

We’ll use bash: the same language as that used on the command line and in job scripts
(linux-centric? Yes, but so is HPC in general)

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 27 / 128

A bit of bash: Basic commands

echo [string] Prints output
time [cmd] Performs cmd and prints how long it took
man [cmd] Get the manual for the command cmd
if/then/else/fi Conditional statement
for/do/done For loop
function Define a function
$(cmd) Run a command and return its output as a string

Example

#!/bin/bash
echo Hi!
time echo Hi!

Put this in ’ex1.sh’
chmod +x ex1.sh

./ex1.sh

Example

#!/bin/bash
if [this = that]
then

echo this=that
else

echo this!=that
fi

Example

#!/bin/bash
a=0
b=5
for ((i=a;i<=b;i++))
do

echo $i
done

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 28 / 128

A bit of bash: variables

Declare and initialize a variable:
varname="string"

To use the variable, you need a dollar sign:
echo $varname

To read a variable from the command line, use
read varname

Special variables

$1,$2, ...: Arguments given to a command or function

$?: Error code of the last command

Storing output in a variables

varname=$(cmd)
stores the output of the command cmd in the variable varname

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 29 / 128

A bit of bash: Basic commands

Directories

ls [directory] Directory LiSting
pwd Print current directory
cd [directory] Change directory
mkdir [filename] Create directory
rmdir [filename] Remove directory
du Estimate file space usage

Files

file [file(s)] Print out file type
cat [file(s)] Prints content of file(s)
less [file(s)] Prints out file(s) by page
rm [file(s)] Delete file(s)
mv [src] [dest] Move file or directory
cp [src] [dest] Copy file or directory (-r)

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 30 / 128

File selection, manipulatation and management
File selection

You can give a pattern instead of a name.

? matches one charcater

* matches anything

These get resolved to all filenames that match the pattern

File manipulation

wc [filename] Line/word/character count of file
grep [text] [file(s)] Searches files for text

Data management stuff

tar [archive] [file(s)] Archive multiple files to one file
gzip [file(s)] Compress files
scp [file(s)] [machine:file(s)] Copy to different machine
scp -r [dir] [machine:directory] Copy to different machine
rsync [options] [directory] [machine:directory] Copy new files

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 31 / 128

A bit of bash: Redirection

[cmd] > [filename] takes what would have gone to the screen, creates a new file [filename],
and redirects output to that file.

Overwrites previous contents of file if it had existed.

[cmd] >> [filename] appends to [filename] if it exists.

[cmd] < [filename] means programs input comes from file, as if you were typing.

Example

#!/bin/bash
echo Hello > hello.txt
read s < hello.txt
echo World >> hello.txt
cat hello.txt

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 32 / 128

A bit of bash: Pipelines

The idea of chaining commands together - the output from one becomes the input of another - is
part of what makes the shell (and programming generally) so powerful.

Instead of

$ [cmd1] > [file]
$ [cmd2] < [file]

one can say

$ [cmd1] | [cmd2]

The output of [cmd1] becomes the input of [cmd2]

Easier and avoids creating a temporary file

echo Hi > somelines.txt
echo An i in this line >> somelines.txt
echo But not here >> somelines.txt
grep i somelines.txt | wc

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 33 / 128

A bit of bash: for loops

Bash has for loops much like any programming language does.

Loops are word list based:
for [varname] in [list]

or range based:
for ((varname=start;varname<=finish;varname++))

Block of commands in the loop should be between do and done.

Example

for word in how are you
do

echo $word
done

how
are
you

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 34 / 128

A bit of bash: Performance Commands

Runtime performance

time COMMAND Time execution of a command
top [-u USER] Display state of current processes
vmstat [INTERVAL] Report memory, cpu and io of current node,
nodeperf (GPC only) Current node’s memory, cpu usage, and procs
jobperf JOBID (GPC only) Mem, cpu, and procs used by JOBID

Statistics (GPC only)

diskUsage/quota How much are you storage using?
scinet usage How much cpu have you used?
scinet gpc priority What is your current priority for compute jobs?

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 35 / 128

(exploratory) hands on: copying files, taring, speeds

$ ssh login.scinet.utoronto.ca
$ gpc
$ debugjob
$ cd $SCRATCH
$ time cp -r /scinet/course/data/rotteneggs .
$ source rotteneggs/setup
$ cd rotteneggs/largesamples/

Questions:

How large is the data in the directory?

How many files does it contain?

How long does it take to tar all files up?

How long does it take to copy it to another directory?

How long does it take to copy it to gpc01?

Use ’time’ for timing. While running, log into your node in

another window, and monitor with top/nodeperf/vmstat.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 36 / 128

(exploratory) hands on: copying files, taring, speeds

How large is the data in the directory?

$ du .
3045952 .

How many files does it contain?

$ ls | wc -w
524

How long does it take to tar all files up?

$ time tar cf allfiles.tar *
real 0m24.646s
user 0m0.170s
sys 0m4.217s

How long to copy it to another directory?

$ mkdir ../newdir
$ time cp allfiles.tar ../newdir/
real 0m2.261s
user 0m0.002s
sys 0m1.847s

How long does it take to copy it to gpc01?

$ time scp allfiles.tar gpc01:
real 0m30.831s
user 0m24.480s
sys 0m7.038s

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 37 / 128

Section 2

Use Case

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 38 / 128

Use case (based on a true story)

Project

Given a number of batches of DNA fragments taken from 12 eggs, we want to know which batches
contain salmonella by comparing (“aligning”) against a reference salmonella genome and a reference
chicken genome.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 39 / 128

Alignment

Alignment in a nutshell

Given some reference sequence, such as CTGA...AGTTAGTGG...

There is some query sequence, such as AGTTCCCTG

One possible alignment is:

CTGA...AGTTAG--TGG...

|||| ||

AGTT*CCCTG

Note that gaps are allowed. The alignment depends on the scoring criterion. These can be rather
sophisticated, but that’s beyond scope.

There are some standard tools for align (e.g. blast), but we’ll use an example program dalex written
for this workshop that you probably should not use in real research. It has a simple scoring metric:
the number of exact matches over the extent of the alignment. E.g. the above alignment scores 60%.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 40 / 128

The Input Data

Reference genomes

The salmonella bacterial genome is taken as is, about 4.6MB.

Of the chicken genome, we’ve only taken one tenth of one chromosome, giving 19MB, which
makes the exercises doable.

Simulated experimental sequences

We have 12 batches (one per egg) of roughly 40 DNA fragments.

Each sample is a 150 bases long only with T, G, C and A as well.

Goal: find out which of the eggs is contaminated with salmonella.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 41 / 128

Bookkeeping

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 42 / 128

Bookkeeping and scripting

Even on an HPC system, you will not ’just run’ and get your results.

There are queuing systems, you will need to split up your work, etc.

Bookkeeping becomes important, for:

1 Data management;

2 Computation management;

3 Postprocessing and documentation.

To automate and track all of this, you’ll like do some scripting.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 43 / 128

Bookkeeping

When dealing with lots of data you’ll need to keep track of:

Where is everything stored?

What needs or needed data transfers/copying?

What format was used (conversions)?

Directory structures, naming conventions.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 44 / 128

Bookkeeping

When dealing with lots of analysis you’ll need to keep track of:

What ’jobs’ in the batch system were done?

Were they successful (no errors)?

Where are the results, do they need to be transfered?

What remains to be done?

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 45 / 128

Bookkeeping

Also don’t forget:

Post-processing.

Take notes of what you are doing.

If you have scripts, programs, etc, use version control.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 46 / 128

Bookkeeping in the example

Even in our simple example, there are lots of things to keep track of, e.g.

Where are the reference sequences stored, and how?

Where are the query samples?

How are they organized?

What queries have been analyzed already?

Which remain to be done?

Where are the results?

How are they organized?

How far along is the postprocessing (can it start before all’s finished)?

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 47 / 128

Bookkeeping

Simple data structure:

Queries are in files eggA-fragmentB.dat, with A=1,2,...12 and B=01,02,...40 (or so) in
subdirectory samples.

Chromosomes in dimchicken/chromosome1.fa and salmonella/genome.fa

Let’s say all results are to go into the subdirectory procsamples.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 48 / 128

Bookkeeping

Simple workflow:

For each sample in each batch, align with each chromosome.

Demand a scoring of at least 96%.

Write result to a file, for post-processing.

Post-processing

For each output file, count the number of matches.

For each batch (e.g. egg), add up the numbers from its samples per chromosome.

The ratio of salmonella matches over chicken matches is an indication of the contamination level.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 49 / 128

Scripting

Script for the simple workflow

#!/bin/bash
workflow1a.sh
chicken=dimchicken/chromosome1.fa
salmonella=salmonella/genome.fa
mkdir -p procsamples
for ((i=1;i<=12;i++))
do

for samplefile in samples/egg$i-fragment*.fa
do

outfile=proc$samplefile-salmonella.out
dalex -w 32 -m 0.96 $salmonella $samplefile > $outfile
outfile=proc$samplefile-chicken.out
dalex -w 32 -m 0.96 $chicken $samplefile > $outfile

done
done

Warning: Would take 6 hours to run, won’t finish in this workshop.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 50 / 128

Scripting

Script for the simple workflow’s postprocessing

#!/bin/bash
#workflow1b.sh
#!/bin/bash
cz=$(cat dimchicken/chromosome1.fa|wc -c)
sz=$(cat salmonella/genome.fa|wc -c)
for ((i=1;i<=12;i++))
do

c=$(grep 'Score' procsamples/egg$i-*-chicken|wc -l)
s=$(grep 'Score' procsamples/egg$i-*-salmonella|wc -l)
contamination=$((s*cz*100/(c*sz)))
echo egg $i: contamination=$contamination

done

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 51 / 128

Section 3

Performance Tuning

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 52 / 128

Performance tip #1: Try Ramdisk

The dalex program is performing quite a bit of I/O

Sometimes you are faced with a program that just does that, and cannot be helped.

In those case, Ramdisk may help

What is ramdisk?
It is a part of memory that pretends to be a disk.

With no moving parts (unlike a hard drive), it is very fast and less sensitive to IOPS

It is private to the computer, unlike a shared file system

It is gone when the node is reboot
(or when a new job start, hopefully)

In linux, usually lives under /dev/shm (type df to find out).

The maximum size of the ramdisk is 11GB on most GPC nodes.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 53 / 128

Hands-on: HDD vs RAMDISK

Modify the script workflow1a.sh to do one egg, for only 9 samples, to test.

Try running on GPFS and time!

Copy data and executable over to ramdisk

Try running both on HDD and RAMDISK and compare.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 54 / 128

Concurrency

Modern computers have more than one core.

Modern supercomputers are modern computers linked together by a fast interconnect.

Modern supercomputers run sophisticated schedulers that can run jobs simultaneously.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 55 / 128

Concurrency

Figure out if the tool of your choice can handle shared memory, threaded parallelism, or distributed
memory parallelism.
Each has its merits:

Threaded:
Pro: Shared memory means some things only need to be loaded once.
Con: Cannot scale beyond 1 node (but can use all cores of that 1 node).

Distributed parallelism:
Con: does not use shared memory.
Pro: But can (potentially) scale beyond one node.

What if it does not support either (such as dalex).
I.e. what if you are stuck with a bunch of serial jobs?

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 56 / 128

Easy case: serial jobs of equal duration

Suppose our node has 8 cores:

#!/bin/bash
cd
(cd jobdir1; ./dojob1) &
(cd jobdir2; ./dojob2) &
(cd jobdir3; ./dojob3) &
(cd jobdir4; ./dojob4) &
(cd jobdir4; ./dojob5) &
(cd jobdir4; ./dojob6) &
(cd jobdir4; ./dojob7) &
(cd jobdir4; ./dojob8) &
wait # crucial

Wait!
Make sure that 8 jobs actually fit in memory, or you will crash the node.
If only 4 fit in memory, and there is no way to reduce that, go ahead.
But there are also about 200 nodes with 32 GB memory.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 57 / 128

Hard case #1: serial jobs of unequal duration

What you need is: Load Balancing

Keep all cores on a node busy.

GNU Parallel can help you with that!

GNU Parallel

GNU parallel is a really nice tool to run multiple serial jobs in parallel. It allows you to keep the
processors on all cores on a node busy, if you provide enough jobs to do.

O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login: The USENIX Magazine,
February 2011:42-47.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 58 / 128

Example

#!/bin/bash
cd ...
module load gnu-parallel # (needed on some systems)
echo 'cd jobdir1; ./dojob1' > joblist.txt
echo 'cd jobdir2; ./dojob2' >> joblist.txt
echo 'cd jobdir3; ./dojob3' >> joblist.txt
echo 'cd jobdir4; ./dojob4' >> joblist.txt
echo 'cd jobdir4; ./dojob5' >> joblist.txt
echo 'cd jobdir4; ./dojob6' >> joblist.txt
echo 'cd jobdir4; ./dojob7' >> joblist.txt
echo 'cd jobdir4; ./dojob8' >> joblist.txt
parallel -j 8 < joblist.txt

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 59 / 128

Hard case #2: serial jobs doing lots of I/O

What you need is: I/O Load Balancing

Nodes have only one “pipe” into the shared file system.

If all jobs on the node do I/O simultaneously, you have 1/8th the performance.

This can be really tough.

Strategies

There is a 1GB disk cache per node. If the data that your jobs use fit inside that, you’re probably
fine.

For this to work, must access ’contiguous’ files: large files, not lots of little ones.

If jobs read at the start, compute, then write out. Staggering the jobs, so that they do not use I/O
at the same time, can help.
(Strategic ’sleep’ commands can do that).

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 60 / 128

Performance Tip #2: Get rid of unnecessary files

As it turns out, dalex writes or reuses an index file for the reference genomes.

This is an optimization that probably works well for larger genomes.

But this index has to be read every time, and adds to the I/O overhead.

How would you know? Always get to know your application!

dalex -h

This tells us the option -i 0 will turn off this option.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 61 / 128

Hands-on: Remove intermediate I/O

Start with your 1 egg, 9 fragments

Switching off the index saving (-i 0) and time!

We’re still producing a lot of intermediate results. Could we not fold the post-processing into the
computation and avoid all these files in the procsamples folder?

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 62 / 128

Performance Tip #3: Bunching your tasks

In our example, we lauched a new instance of dalex for every fragment.

That means reading the executable and reference chromosomes every time.

This, too, turns out to be unnecessary, as dalex can take multiple fragments on the command-line.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 63 / 128

Hands-on: Bunching

Change the script to use multiple fragments on the dalex command line instead of a loop.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 64 / 128

Performance Tip #4: Reduce the number of files

We still have all our fragments in separate files.

Wouldn’t it be easier if they were all combined (though separated by egg), so we would have just
12 files in the samples directory.

Save not just at time of computation, but also when trasnfering data.

This, too, turns out to possible, as dalex accepts .mfa files, which are concatenations of .fa files.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 65 / 128

Hands-on: Reduce number of files

Concatenate the sample fragments of each egg together to .mfa files.
Change the script to have dalex read these files instead of a list of .fa files.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 66 / 128

Section 4

File Formats

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 67 / 128

In this section, we will discuss the following topics:

Handling data efficiently; staying organized.

Storage formats.

Handling metadata.

NetCDF.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 68 / 128

Data management

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 69 / 128

Data management

Data is now produced at an amazing rate.

Increase in computing power makes simulations larger/more frequent.

Increase in sensor technology makes experiments/observations larger.

Large Hadron Collider: ∼ 50-100 PB to date.
Square Kilometer Array: ∼ 1 EB /day !

Data sizes that used to be measured in MB/GB are now measured in TB/PB.

It’s easier to make big data than to do something useful with it!

Data access is the now the bottleneck in many situations.

Whether you are producing huge amounts of data or not, you must have a plan for how you are going to
deal with your data.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 70 / 128

Data considerations

What are the options for dealing with data?

Deal with it right away:

Don’t just save everything. It’s wasteful to save junk that you’ll never use. Storage space is finite.
Use on-the-fly analysis; automate your post-processing.
Is it worth storing or just recomputing?

Store it for later analysis:

Store for short-term storage, on disk.
Store for long-term storage, on tape.

This class is focussed on the later option. How do you create/store/manage your data efficiently?

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 71 / 128

Terminology

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 72 / 128

Data creation

Let’s start at the beginning. How do you create data efficiently?

File I/O (Input/Output) is slow! Avoid it as much as you can!

(CPU operations ∼ 1 ns, disk access times ∼ 5 ms.)

Do not create lots of little files! They are an inefficient use of space and time (slow to create).

Instead, save your data in big files which contain all the information you need.

Do not have multiple processes writing to files in the same directory (unless you’re using parallel
I/O). A process will ”lock” the directory after it’s done writing the file and updating the file
metadata. The other processes will have to sit and wait while this is being done.

File I/O is slow, especially with small files, so restrict your I/O to a few big files.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 73 / 128

Data management

How should your files be organized on disk?

Human-interpretable filenames lose their charm after a few dozen files (or after a few months
pass). Don’t use filenames to store run information.

Avoid using a flat directory structure (no sub-directories). Organize your data in a sensible
directory tree.

If you’re doing many runs with many varied parameters, consider using a database to store the
filenames of your runs, with associated run metadata.

Rigorously maintained meta-data (data about the data) is essential.

Back up your data, especially your metadata or database.

Take-home message: keep your data well-organized.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 74 / 128

ASCII versus binary

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 75 / 128

Storage formats: ASCII

The storage format we all start with is ASCII: American Standard Code for Information Interchange.
It’s our old friend, plain text.

Pros:

Human Readable.
Portable (architecture independent).

Cons:

Inefficient Storage.
Precision is lost for floats.
Slow to Read/Write (conversions).
(Embarrassing.)

Our old friend has done us well, but there are better storage options we can use.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 76 / 128

Storage formats: binary

Native binary is the format in which the data is stored in memory:

Pros:

Efficient Storage (256 x floats @4bytes takes 1024 bytes).
Efficient (fast) Read/Write (native, no conversion is needed).

Cons:

Not human readable.
Have to know the format it’s stored in, or else you’ll have to reverse-engineer the file format to read it.
Not necessarily portable between systems (Endianness).

In terms of speed and file size, there’s no contest.
Writing 128 million doubles to storage:

Format /scratch (GPFS) /dev/shm (RAM) /tmp (disk)
ASCII 173s 174s 260s
Binary 6s 1s !!! 20s

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 77 / 128

ASCII versus binary

Syntax used:

Text/ASCII Binary
C f=fopen(’test’,’w’); f=fopen(’test’,’wb’);

fprintf(f,...); fwrite(f,...);

C++ std::ofstream f(’test’); std::ofstream f(’test’,

std::ios::binary);

f << ...; f.write(...);

Fortran open(6,file=’test’, open(6,file=’test’,

form=’formatted’) form=’unformatted’)

write(6,*) ... write(6) ...

Python f=open(’test’,’w’) f=open(’test’,’wb’)

print >>f, ... f.write(bytes(...))

print(...,file=f)

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 78 / 128

Hands-on: binary index files with dalex

Remember switching off those index files for dalex earlier on?

Well, those were in ascii, but there’s an option to do them in binary too.

Let’s switch them back on (-i 1), time things, and then, let’s switch to binary (-i 2).

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 79 / 128

Metadata

But what about that metadata? What is it?

Metadata is the data about the data. Meaning information that lets you make sense of the data.

It can (and should) include just about any and all information about how the data was created:

what parameters were used in the run?
where it was run, when it was run.
the version of the code used to perform the run, compiler used to create the code, compiler flags.
and anything else that might or not be useful.

If you’re not sure if that bit information should be kept as metadata, then keep it. You never know
what information might be needed in the future.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 80 / 128

Standard formats

What’s the best way to save our metadata? There are several standard file formats which combine the
metadata with the data:

HDF5 (Hierarchical Data Format)

NetCDF (Network Common Data Form)

discipline-specific formats

What are the benefits?

Most are provided as libraries.

Self-describing (metadata is embedded with the data).

Many are binary agnostic, so portable.

Many support Parallel I/O and native FS support.

Broader tool support (visualization, etc.)

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 81 / 128

NetCDF

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 82 / 128

An introduction to netCDF

We are going to focus on netCDF, which is a commonly-used format. What is it?

Stands for network Common Data Form.

Not compatible with NASA’s CDF format.

Used for array-oriented scientific data and metadata format.

Stores in a binary form, so relatively efficient.

Though it’s in binary, it uses a common output format so different types of machines can share files.

Self-describing, direct access, appendable.

Many many wrappers to the API (C, C++, Fortran, Python, ...).

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 83 / 128

NetCDF classic data model

The original netCDF data model contains three entry types:

Variables: N-dimensional arrays of data, of type char, byte, short, int, float, double.

Dimensions: these describe the axes of the data arrays. A dimension has a name and a length.

Attributes: Notes and supplementary information. These are scalar values or 1D arrays.

Attributes can be global, or apply to just a dimension or variable.
A good place to stick your miscellaneous metadata.
Units are a particularly good form of metadata.

This is enough functionality to get us started. More-advanced features are also available.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 84 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 85 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 86 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 87 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 88 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 89 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 90 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 91 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 92 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 93 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 94 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 95 / 128

NetCDF classic data model

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 96 / 128

NetCDF-4

In 2008 netCDF-4 was released:

This extended netCDF to use HDF5 as its data-storage layer, allowing the performance advantages
of HDF5:

Compression.
Chunking.
Parallel I/O (many processes can write to the same file simultaneously).

Completely back-compatible.

Introduced user-defined types to netCDF.

Introduced little and big endian support.

This is the version we’ll be using in our examples.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 97 / 128

NetCDF conventions

A quick note about netCDF conventions:

There are lists of conventions that you can follow for variable names, unit names (”cm”,
”centimetre”, ”centimeter”), etc.

If you are planning for interoperability with other codes, this is the way to go.

Codes expecting data following, say, CF (Climate and Forcast) conventions for geophysics should
use that convention.

www.unidata.ucar.edu/software/netcdf/conventions.html

Make life easier for yourself and your collaborators: use the standard conventions.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 98 / 128

www.unidata.ucar.edu/software/netcdf/conventions.html

NetCDF writing example

// netCDF writing.cpp
#include <vector>
#include <netcdf>
using namespace netCDF;

int main() {
int nx = 6, ny = 12;
int dataOut[nx][ny];
for(int i = 0; i < nx; i++)

for(int j = 0; j < ny; j++)
dataOut[i][j] = i * ny + j;

// Create the netCDF file.
NcFile dataFile("1st.netCDF.nc",

NcFile::replace);
// Create the two dimensions.
ncdim xDim = dataFile.addDim("x",nx);
ncdim yDim = dataFile.addDim("y",ny);
std::vector<ncdim> dims(2);

dims[0] = xDim;
dims[1] = yDim;

// Create the data variable.
NcVar data =

dataFile.addVar("data", ncInt,
dims);

// Put the data in the file.
data.putVar(&dataOut);

// Add an attribute.
dataFile.putAtt("Creation date:",

"12 Dec 2014");

return 0;

}

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 99 / 128

NetCDF writing example, continued

$
$ module load gcc/4.8.1 hdf5/1811-v18-serial-gcc
$ module load netcdf/4.2.1.1 serial-gcc
$
$ g++ -I${SCINET NETCDF INC} netCDF writing.cpp

-o netCDF writing -lnetcdf c++4
$
$./netCDF writing
$

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 100 / 128

NetCDF writing example, continued
$
$ ncdump 1st.netCDF.nc
netcdf 1st.netCDF {
dimensions:

x = 6 ;
y = 12 ;

variables:
int data(x, y) ;

// global attributes:
:Creation date = "12 Dec 2014" ;

data:
data =
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 ;
}
$

Use the ’ncdump’ command to see the contents of your netCDF file.
Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 101 / 128

NetCDF reading example

// nc reading2.cpp
#include <iostream>
#include <netcdf>
using namespace netCDF;

int main() {
// Specify the netCDF file.
NcFile dataFile("1st.netCDF.nc",

NcFile::read);

// Read the two dimensions.
ncdim xDim = dataFile.getDim("x");
ncdim yDim = dataFile.getDim("y");
int nx = xDim.getSize();
int ny = yDim.getSize();
std::cout << "Our matrix is "

<< nx << " by " << ny <<
std::endl;

int **p = new int *[nx];
p[0] = new int[nx * ny];
for(int i = 0; i < nx; i++)

p[i] = &p[0][i * ny];

// Create the data variable.
NcVar data =
dataFile.getVar("data");
// Put the data in a var.
data.getVar(p[0]);

for(int i = 0; i < nx; i++) {
for(int j = 0; j < ny; j++)
{std::cout << p[i][j] << " ";
}
std::cout << std::endl;

}
return 0;
}

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 102 / 128

NetCDF reading example 2, continued

$
$ module load gcc/4.8.1 hdf5/1811-v18-serial-gcc
$ module load netcdf/4.2.1.1 serial-gcc
$
$ g++ -I${SCINET NETCDF INC} nc reading2.cpp -o nc reading2 -lnetcdf c++4
$
$./nc reading2
Our matrix is 6 by 12
0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71
$
$

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 103 / 128

More netCDF goodness

And there are more features:

Not only can you read in only the
variables that you’re interested in, it is
also possible to access subsections of
an array, rather than reading in the
entire thing.

Allows parallel I/O.

Allows ”infinite” arrays, which means
the arrays can grow. Good for
timestepping, for example.

Allows you to save custom datatypes
(objects, for example).

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 104 / 128

Writing NetCDF4 files in Python

from netCDF4 import Dataset
import numpy as np
root_grp = Dataset(’test.nc’, ’w’, format=’NETCDF4 ’)
root_grp.description = ’Example temperature data’
dimensions
root_grp.createDimension(’time’, None)
root_grp.createDimension(’lat’, 72)
root_grp.createDimension(’lon’, 144)
variables
times = root_grp.createVariable(’time’, ’f8’, (’time’,))
latitudes = root_grp.createVariable(’latitude ’, ’f4’, (’lat’,))
longitudes = root_grp.createVariable(’longitude ’, ’f4’, (’lon’,))
temp = root_grp.createVariable(’temp’, ’f4’, (’time’, ’lat’, ’lon’,))
data
lats = np.arange(-90, 90, 2.5)
lons = np.arange (-180, 180, 2.5)
latitudes [:] = lats
longitudes [:] = lons
for i in range (5):

temp[i,:,:] = np.random.uniform(size=(len(lats), len(lons)))
group
root_grp.close ()

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 105 / 128

Reading NetCDF4 files in Python

from netCDF4 import Dataset
import pylab as pl

root_grp = Dataset(’test.nc’)

temp = root_grp.variables[’temp’]

for i in range(len(temp)):
pl.clf()
pl.contourf(temp[i])
pl.show()
raw_input(’Press enter.’)

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 106 / 128

NetCDF writing example, in R

Writing a NetCDF file can be a bit
clunky, but it’s worth the effort:

ncdim def defines a dimension. By
default it also creates a ”dimension
variable”.

ncvar def defines a variable. The
dimensions are in a list.

nc create creates the file, variables
must be specified.

library(ncdf4)

nx <- 10
ny <- 5

our axes
x <- 1:nx
y <- 1:ny

our data
a <- matrix (1:(nx * ny), nrow = nx ,

ncol = ny)

dimensions
xdim = ncdim_def("x", "metres", as.

double(x), longname = "")
ydim = ncdim_def("y", "metres", as.

double(y), longname = "")

create the variable
a.def <- ncvar_def("a", "unitless",

list(xdim , ydim))

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 107 / 128

NetCDF writing example in R, continued

No seriously, this is a good idea!

ncvar put puts the data (”a”) into
the variable (”a.def”), which is in
the file.

ncatt put defines an attribute.
This is where you add information
about how this data was
generated. The second argument
begin ’0’ means it’s a global
attribute.

nc close closes the file.

create the file
ncout <- nc_create("test.nc", a.def

, force_v4 = T)

put the variable in the file
ncvar_put(ncout , a.def , a)

create some global attributes
ncatt_put(ncout , 0, "title", "My

Awesome Data")
ncatt_put(ncout , 0, "institution",

"SciNet")

nc_close(ncout)

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 108 / 128

NetCDF reading example

R can be used to read NetCDF
files.

nc open opens your NetCDF
file.

The print function gives the
output that is similar to
’ncdump’.

> library(ncdf4)

> ncin <- nc open('test.nc')

>

> print(ncin)
File test2.nc (NC FORMAT NETCDF4):

1 variables (excluding dimension
variables):

float a[x,y] (Contiguous stor-
age)

units: unitless
2 dimensions:

x Size:10
units: metres

y Size:5
units: metres

2 global attributes:
title: My Awesome Data
institution: SciNet

>

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 109 / 128

NetCDF reading example, continued

You can also reach into a
NetCDF files and just grab the
parts that you want.

ncvar get grabs a variable
from the open NetCDF file.

ncatt get grabs an attribute.
The second argument set to
0 indicates that the attribute
is global. The function
returns a named list.

>

> x <- ncvar get(ncin, "x")

> print(x)
[1] 1 2 3 4 5 6 7 8 9 10

>

> a <- ncvar get(ncin, "a")

>

> dim(a)
[1] 10 5

>

> ncatt get(ncin, 0, "institu-
tion")
$hassatt
[1] TRUE

$value
[1] "SciNet"

>

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 110 / 128

Data Managament and Parallel I/O
Data files must take advantage of parallel I/O

For parallel operations on single big files,
parallel filesystem isn’t enough

Data must be written in such a way that
nodes can efficiently access relevant
subregions

HDF5, NetCDF formats typical examples
for scientific data

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 111 / 128

HDF5
HDF5 is also self-describing file format and set of libraries
Unlike NetCDF, much more general; can shove almost any type of data in there

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 112 / 128

HDF5 Groups

HDF5 has a structure a bit like a linux
filesystem:

“Groups” - directories,

“Dataset” - files

NetCDF, HDF are not Databases

Seem like - lots of information, in key value pairs.

Relational databases - interrelated tables of small pieces of data

Very easy/fast to query

But cant do subarrays, etc..

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 113 / 128

Summary

Things to remember from this section:

Use file I/O as little as possible. Keep it to big files, with as few IOPs as possible.

Use a binary format to store you data, not ASCII.

It’s a good practise to make your data ”self-describing”, meaning store your metadata with your
data in the same file.

NetCDF is a commonly used format to store data that has many useful features.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 114 / 128

Section 5

Data Management

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 115 / 128

Planning, storing, etc..

Design/think about the data structure of your problem (simulation, analisys, etc...)

Optimize your workflow or pipeline

Consider the big picture: “large (big) data” & “long time”

Keep good records and logs of your data (sims: initial conditions, version of your code, parameters
– data analysis: methods, raw data, etc...)

Version Control: svn, cvs, git, mercurial; bitbucket, github, ...

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 116 / 128

Data Management: monitoring

Most HPC systems, have quotas in storage resources (SciNet: 1M files, 20TB)

Minimize use of filesystem commands like ls -l and du.

Regularly check your disk usage using /scinet/gpc/bin6/diskUsage.

Warning signs which should prompt careful consideration:

More than 100,000 files in your space
Average file size less than 100 MB

Remember to distinguish: Analysis, Required and By-Product data.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 117 / 128

HPSS, tapes & archival resources

most HPC systems, include a High
Performance Storage System

tape-backed hierarchical storage system
that provides a significant storage resource

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 118 / 128

How to make the file system work for you rather than
against you

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 119 / 128

Make a Plan!

Make a plan for your data needs:

How much will you generate,
How much do you need to save,
And where will you keep it?

Note that in most HPC systems “scratch” is temporary storage for 3 months or less.

Options?
1 Save on your departmental/local server/workstation

(it is possible to transfer TBs per day on a gigabit link);
2 Apply for a project space allocation at next RAC call
3 Change storage format.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 120 / 128

Change storage format

Write binary format files
Faster I/O and less space than ASCII files.

Use parallel I/O if writing from many nodes

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

Don’ts:

Don’t write lots of ASCII files. Lazy, slow, and wastes space!

Don’t write many hundreds of files in a 1 directory.
Hurts responsiveness!

Don’t write many small files (< 10MB).
System is optimized for large-block I/O!

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 121 / 128

Hands-on: compression

We’ve focused on processing speed mostly for now, but the way the data is stored in our usecase is
itself quite inefficient.

Let’s try to tar and compress all the samples using tar and gzip.

Compare the difference in size.

Notes:

If you were to run out of ramdisk space, sometimes you could use compression. Other times, the time of
compression is not worth it.

For longer term storage, compression and packing are more useful.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 122 / 128

General guidelines in restructuring data

1. Identify your unit of computation

If files bundle naturally (or even mildly forced), put them in single (tar) files if and when you can.

2. Distinguish types of data

Analysis: i.e., that which is strictly necessary for later analysis.

Required: e.g. for restarts, but you might not need this.

By-product: All the stuff you don’t need

3. Take action
Remove By-product data as soon as possible.

Bundle data by ’unit of computation’.

Separately bundle the Analysis and Required data.

Only keep the Analysis data on hand, store the rest (tarball, HPSS).

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 123 / 128

tar-ing example

$ cd samples
$ for a in $(seq 12); do
$ tar cf batch$a.tar egg$a-*.dat
$ done

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 124 / 128

Moving data between different machines

To move your data between machines, scp will do.

Transfer will be faster if you have compressed and tarred files.

Still, scp is not always the fastest (single stream), may time out, etc.

An easier and more robust way is to use Globus.

See https://www.computecanada.ca/research-portal/globus-portal
https://globus.computecanada.ca/SignIn

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 125 / 128

Moving data between different machines: Globus

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 126 / 128

Section 6

Conclusions

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 127 / 128

Conclusions

We hope to have conveyed that

Computing at scale requires careful thought.

New bottlenecks can arise as one scales up.

Monitoring and testing is important.

I/O often the bottleneck.

Restructuring data can help a lot.

Using ramdisk can help.

Many files are bad.

Ramses van Zon and Marcelo Ponce (SciNet/UofT) Storage and I/O May 17, 2017 128 / 128

	Intro to Storage & Performance
	Use Case
	Performance Tuning
	File Formats
	Data management
	Terminology
	Data creation
	ASCII versus binary
	Self-describing formats
	Writing NetCDF files in R
	Reading NetDF files
	Summary

	Data Management
	Conclusions

