
BCH2203 Python - 12. Randomness, structure, and more

Ramses van Zon

10 April 2024

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 1 / 24

This lecture. . .

We will look at a few additional useful things we can do in Python.

Randomness

Protein Structure using Biopython

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 2 / 24

http://www.scinethpc.ca

1

Randomness

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 3 / 24

About Probability and Statistics
Probability

The chance of event A happening is its probability P(A). It lies between 0 and 1.

Probabilities of two events A and B can be independent: P(A and B) = P(A)P(B) or else, correlated.

Probabilties can be conditional: the change that A happened if B has happened: P(A|B).

Statistics

The study of collecting, analyzing, interpreting and presenting empirical data.

Descriptive, determining properties of data and drawing conclusions about parameters.
Inferential, trying to make preductions, like in machine learning.

Randomness

Statistics deals with uncertainties, whether from measurement errors or inherent randomness.
One often has to assume the randomness to have particular properties, ie. their distribution.

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 4 / 24

http://www.scinethpc.ca

Distributions
Random variables are numbers of sets that describe possible outcomes of an event.
Random variables are described by distributions.
A distribution describes how the probability of an event depends on the (value of the) outcome.

E.g. flipping a coin.

The possible outcomes are “head” or “tail”, the distribution if P(head)=50% and P(tail)=50%.

This is an example of a discrete probabilty distribution.

There are also continuous probability distributions.

E.g. What is the chance that it rains 1cm today?

But the chance that that happens is zero, because there are infinitely many possible outcomes.

Instead, for continuous variable, we need to ask better questions, like, what is the change that it rains
between 1 and 1.01 cm? Or, what is the probability that it will rain more than 1cm.

To be able to deal with this, the distributions for continuous variables are probability density functions.
Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 5 / 24

http://www.scinethpc.ca

Descriptive Statistics: mean, mode, quantiles. . .

>>> import numpy as np
>>> import pandas as pd
>>> x = np.array([-4,-2,-1,0,1,5,10.])
>>> d = pd.DataFrame(x)

sum
>>> sum(x) # plain python
9.0
>>> x.sum() # numpy
9.0
>>> d.sum() # pandas
0 9.0
dtype: float64
>>>

mean
>>> x.mean()
1.2857142857142858
>>> d.mean()
0 1.285714
dtype: float64

quantiles
>>> sx = np.sort(x)
>>> qf = sx[len(sx)//4]
>>> qm = sx[len(sx)//2]
>>> qt = sx[-len(sx)//4]
>>> qf,qm,qt
(-2.0, 0.0, 5.0)
>>> d.quantile(

[.25,.5,.75])
0

0.25 -1.5
0.50 0.0
0.75 3.0

mode,hist
>>> h = np.histogram(x,8)
>>> counts = h[0]
>>> bnd = h[1]
>>> i = counts.argmax()
>>> mode=(bnd[i]+bnd[i+1])/2
>>> mode
-1.375

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 6 / 24

http://www.scinethpc.ca

More Statistics with scipy.stat

The SciPy package contains all of the statistical functions that you’ll probably ever need.

The scipy.stats subpackage is based around the idea of a ‘random variable’ type.

A whole variety of standard distributions are available:
I Continuous distributions: Normal, Maxwell, Cauchy, Chi-squared, Gumbel Left-scewed, Gilbrat,

Nakagami, . . .
I Discrete distributions: Poisson, Binomial, Geometric, Bernoulli, . . .

The ‘random variables’ have all of the statistical properties of the distributions built into them
already:
cdf, pdf, mean, variance, moments, . . .

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 7 / 24

http://www.scinethpc.ca

Example

Let us create a normally distributed random variable with a mean of 1.0 and a standard deviation of 0.5.
>>> from scipy import stats
>>> nd = stats.norm(1, 0.5)
>>> nd.mean()
1.0
>>> nd.median()
1.0
>>> nd.std()
0.5
>>> nd.var()
0.25

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 8 / 24

http://www.scinethpc.ca

2

Sampling

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 9 / 24

Sampling from the normal distribution
>>> from matplotlib.pyplot import plot,pause,hist
>>> from scipy.stats import norm
>>> from numpy import linspace
>>> # check pdf by sampling
>>> x = linspace(-5, 5, 100)
>>> plot(x, norm.pdf(x, loc = -1, scale = 2), 'r')
>>> samples = norm.rvs(size = 1000,

loc = -1, scale = 2)
>>> h = hist(samples,

bins = 41, density=True)
>>> pause(.1)
>>>

8 6 4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

The .rvs(size=...) method draws size random samples from the distribution.

hist is like np.histogram but also plots (h contains the histogram values).
Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 10 / 24

http://www.scinethpc.ca

Uh, Random Numbers from a Computer?

Computers cannot create truly random numbers because it is a deterministic machine.

Either get from external source (radioactive decay, external activity)

Or use pseudo random number generators.

These create a set of numbers, starting from a ‘seed’. Sequence is deterministic given the seed.

These are good if statistical tests on the sequence show little deviation from randomness.

General good ones are known by now. Even the default in python’s random module is good
(Mersenne-Twister).

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 11 / 24

http://www.scinethpc.ca

Setting the seed

Sometimes you need consistency in your
randomness:

Pseudo-random numbers are generated from
an initial ‘seed’.

This seed generates the first number, which is
then used as the seed for the second number.

If you need consistency in your random
numbers (for debugging, for example), you
can set the seed explicitly so that you get the
same random numbers every time.

>>> norm.rvs()
1.74481176421648
>>> norm.rvs()
-0.7612069008951028
>>>
>>> numpy.random.seed(1)
>>> norm.rvs()
1.6243453636632417
>>>
>>> import scipy
>>> scipy.random.seed(1)
>>> norm.rvs()
1.6243453636632417
>>>
>>> import random as rd
>>> rd.seed(1)
>>> norm.rvs()
-1.0729686221561705

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 12 / 24

http://www.scinethpc.ca

Other use case for random numbers

Machine learning

We randomly divide data in training and test sets.
I Some Machine Learning algorithms need random starting points (clustering) or random split points

(decision trees)
I We can also subsample or resample data to repeat an ML algorithm to validate the results.

Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a method to generate samples from general probability
distributions.

It’s considered one of the most important algorithms of the 20th century.

It’s based on Baysian Inference.

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 13 / 24

http://www.scinethpc.ca

3

Protein Structure using Biopython

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 14 / 24

So what about structure?

When usin Biopython, we have focused mostly on sequences.

However, The 3d structure, or shape, of a protein is essential to its biological function.

Although the aminoacids in the sequence determine the shape in principle, there is no known easy
relation between the sequence and the 3d structure.

(not to mention that it depends on the surrounding liquid’s content and conditions)

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 15 / 24

http://www.scinethpc.ca

Computational approaches

Molecular dynamics (MD) simulations starting from ‘random coil’ of protein sequence.

One would never do MD in Python, performance is too critical, use GROMACS, NAMD, LAMMPS,
. . . written in C++.

All-atom MD simultations can’t reach time scales of protein folding, but can give ‘bits’ of the
trajectory as input of more coarse grained models.

Other computational studies start from the (experimentally) known structures.

We can investigate the known structures in Python using Biopython, in particular, the PDB module.

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 16 / 24

http://www.scinethpc.ca

Experimentally determined protein structures

Experimental techniques like X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy.

Results are often submitted to, and can be retrieved from the Protein Databank.

https://www.wwpdb.org
https://www.ebi.ac.uk/pdbe
https://www.rcsb.org
https://bmrb.io
https://pdbj.org

You can download the whole database of ~1TB, weekly updated (but would you?).

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 17 / 24

http://www.scinethpc.ca
https://www.wwpdb.org
https://www.ebi.ac.uk/pdbe
https://www.rcsb.org
https://bmrb.io
https://pdbj.org

Protein structure file formats
There are different file formats for protein structures:

PDB: Legacy (i.e. old, unmaintained) because of limitations on what it can hold.

PDBx/mmCif: Macro-Molecular Crystallographic Information File

PDBML/XML format: An XML format

MMTF: Highly compressed format

Bundle: PDB formatted archive for large structures

To download, you’ll need to know the PDB code.

This is an entry number is assigned to each structure.

Typically it is a number followed by 3 letters (E.g. 2HVF).

Look up on website.

The same molecule can have multiple entries.

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 18 / 24

http://www.scinethpc.ca

How to download structures

Use PDBList from Bio.PDB to download these.
>>> from Bio.PDB import PDBList

>>> pdbl = PDBList()

>>> filename = pdbl.retrieve_pdb_file("2HVF",
... file_format="mmCif")
Downloading PDB structure '2HVF'...

>>> print(filename)
'/gpfs/fs1/home/s/scinet/rzon/hv/2hvf.cif'

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 19 / 24

http://www.scinethpc.ca

Reading PDB files into Python

We can use PDB to load the file we just downloaded into a convenient data structure in Python:
>>> from Bio.PDB.MMCIFParser import MMCIFParser

>>> parser = MMCIFParser()

>>> structure = parser.get_structure("2hvf", filename)

There also exist PDBParser and MMTFParser for PDB Files and MMTF files

There are also functions for writing these formats, so you could e.g. filter out the water molecules and
write the result to a file.

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 20 / 24

http://www.scinethpc.ca

Analyzing structures with Bio.PDB
structure is structured as a “SMCRA” hierarchy:

Structures contain models

Models contain chains

Chains contain residues

Residues contain atoms

An Atom contains a vector (its position) and other
properties, but does not have children

>>> structure = parser.get_structure("2hvf", filename)

>>> model = structure[0]

>>> chain = model["A"]

>>> residue = chain[1]

>>> atom = residue['CA']

More about the structure of structure

https://biopython.org/wiki/The_Biopython_Structural_Bioinformatics_FAQ

Th. Hamelryck and B. Manderick,
PDB file parser and structure class implemented in Python, Bioinformatics 19, Issue 17, pp. 2308–2310.

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 21 / 24

http://www.scinethpc.ca
https://biopython.org/wiki/The_Biopython_Structural_Bioinformatics_FAQ

4

Conclusion

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 22 / 24

This is the end. . .

We’re at the last lecture.

Congrats everyone for getting to this point!

What did we do again?

Python programming

Data structures
File I/O
Regular expressions
Visualization
Machine learning
Randomness

Biochem specific

Biopython
Sequences
Alignment
Protein Structure

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 23 / 24

http://www.scinethpc.ca

What’s next?

There are quite a few topics we did not get into,
e.g.

Object orientied programming

Generators

Database interfaces

Dates/times

Parallel processing

GUIs

Debugging

Deep learning

There should be a course evaluation coming your
way.

Feel free to tell me how the course could be
improved.

Although this was a relatively short course, I hope
to have given you enough to start you off on your
Python Biochem journey.

Ramses van Zon BCH2203 Python - 12. Randomness, structure, and more 10 April 2024 24 / 24

http://www.scinethpc.ca

	Randomness
	Sampling
	Protein Structure using Biopython
	Conclusion

