
GPU Computing with Directives

Ramses van Zon

PHY1610 Winter 2024

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 1 / 24

Hybrid architectures with accelerators

Multicore nodes linked together with an
(high-speed) interconnect.

Nodes also contain one or more accelerators,
usually GPUs.

These are specialized, super-threaded
(500-2000+) processors.

GPUs have their own, limited, shared memory.

Specialized programming languages, CUDA,
OpenCL, OpenACC, OpenMP.

Can be mixed with MPI, OpenMP.

Memory Memory

Memory Memory

Memory Memory

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 2 / 24

Heterogeneous Computing

What is it?

Use different compute device(s) concurrently in the same computation.

Example: Leverage CPUs for generatl computing components and GPUs for data parallel and
floating point intensive components.

Pros: GPUs are faster and cheaper ($/FLOP/Watt) for compute

Cons: More complicated to program, only benefits certain applications.

Terminology

GPGPU Programming: General Purpose Graphics Processing Unit Programming
HOST: CPU and its memory
DEVICE: Accelerator (GPU) and its memory

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 3 / 24

Accelerators
Systems with accelerators are machines which contain an
“off-host” accelerator, such as a GPU or Xeon Phi.

These accelerator devices are very fast and good at massively
parallel processing (having 500-2000+ cores).

Complicated to program.

Programming model: CUDA, OpenACC, OpenMP offloading,
and OpenCL.

Needs to be combine with at least some ‘host’ code:
heterogeous computing.

Target device: Intel Xeon Phi

Target device: GPU

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 4 / 24

Accelerators: CPUs vs GPUs

Cache

DRAM

Control ALU

ALU

ALU

ALU

CPU

DRAM

GPU

CPU

general purpose
task parallelism (diverse tasks)
maximize serial performance
large cache
multi-threaded (4-16)
some Single-Instruction-Multiple-Data (SIMD)

GPU

data parallelism (single task)
maximize throughput
small cache
super-threaded (500-2000+)
“streaming multiprocessors” (SMs)
almost all SIMD

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 5 / 24

Programming Accelerators with OpenMP

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 6 / 24

Memory Model in OpenMP (3.1)

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 7 / 24

Execution Model in OpenMP

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 8 / 24

Memory Model in OpenMP 4+

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 9 / 24

Memory Model in OpenMP 4+

Device has its own data environment

And its own shared memory

Threads can be bundled in a teams of threads

These threads can have memory shared among
threads of the same team

Whether this is beneficial depends on the
memory architecture of the device.

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 10 / 24

Data mapping

Host memory and device memory usually district.

OpenMP 4+ allows host and device memory to be shared (e.g. on Mist).

To accommodate both, the relation between variables on host and memory gets expressed as a
mapping:

Different types:
I to: existing host variables copied to a corresponding variable in the target before
I from: target variables copied back to a corresponding variable in the host after
I tofrom: Both from and to
I alloc: Neither from nor to, but ensure the variable exists on the target but no relation to host variable.

Note: arrays and array sections are supported.

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 11 / 24

OpenMP Device Constructs – Core Functionality

Execute code on a target device

omp target
omp declare target

Manage the device data environment

map
omp target data
omp target enter/exit data
omp target update
omp declare target

Parallelism and Workshare for devices

omp teams
omp distribute

Device Runtime Routines

omp_get_...

Environment variables

OMP_DEFAULT_DEVICE
OMP_THREAD_LIMIT
OMP_TARGET_OFFLOAD

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 12 / 24

Example
#include <rarray>
double sumarray(rarray<double,1> a) {

double sum=0.0;
double* data = a.data();
int n = a.size();
#pragma omp target map(data[0:n]) map(tofrom:sum)
#pragma omp teams distribute parallel for reduction(+:sum)
for (int i = 0; i < n; i++)

sum += data[i];
return sum;

}

Sums elements in array on the GPU

Specify data needed on device

Does not work with rarray,
std::vector, etc.
(OpenMP 5.2 -> custom mappers)

Instead: use pointers and sizes in map

Multiple levels of parallelization
int main() {

int n = 50'000'000;
int i = 0;
rarray<double,1> a(n);
for (double& x: a)

x = (++i)/(0.5*n*(n+1));
double sum = sumarray(a);
std::cout << "Sum is: " << sum << "\n";
std::cout << "This should be 1.0 (up to epsilon)\n";
std::cout << "Sum - 1.0 is: " << sum - 1.0 << "\n";

}
Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 13 / 24

Compilation

E.g. Mist or Graham, you can use the NVIDIA compilers
$ module load nvhpc
$ nvc++ -std=c++17 -mp=gpu foo.cpp -o foo

If your version of gcc supports gpu offloading and you have an NVIDIA GPU:
$ g++ -std=c++17 -fopenmp -foffload=nvptx-none foo.cpp -o foo

Run as usual:
$./foo
Sum is: 1.0
This should be 1.0 (up to epsilon)
Sum - 1.0 is: 1.66e-16

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 14 / 24

Modern OpenMP Execution Mapping
The target construct offloads the enclosed
code to the accelerator: single thread on a
device (GPU)

The teams construct creates a league of
teams: one thread each, concurrent execution
(on SMs)

The parallel construct creates a new team of
threads: parallel execution

The simd construct indicates SIMD execution
is allowed: SIMD execution

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 15 / 24

OpenMP Target

Device:
An implementation-defined (logical) execution
unit (or accelerator)

Device data environment:
Storage associated with the device

The execution model is host-centric
I Host creates/destroys data on device(s)
I Host maps data to the device(s)
I Host offloads OpenMP target regions to

target device(s)
I Host updates the data between host and

device(s)

Target construct

Transfer control from the host to the device

pragma omp target [clause, ...]

Clauses
I device(scalar-integer-expression)
I map(alloc | to | from | tofrom: list)
I if(scalar-expr)

Use target construct to:

Transfer control from the host to the target
device
Map variables to/from the device data env.

Host thread waits until target region completes (or use nowait)

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 16 / 24

OpenMP - Execution Example, from CPU to device. . .
Ex: Multiplies one vector by a scalar and then adds it to another, a = b + scalar ∗ c

CPU implementation

#pragma omp parallel for
for (j=0; j<N; j++)

a[j] = b[j] + scalar*c[j];
// depending on the compiler/hardware combination
// an optimization may result from the simd construct
#pragma omp parallel for simd
for (j=0; j<N; j++)

a[j] = b[j] + scalar*c[j];

target & teams device-offload program

#pragma omp target teams distribute parallel for [simd]
for (j=0; j<N; j++)

a[j] = b[j] + scalar*c[j];

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 17 / 24

OpenMP Execution Example, from CPU to device. . .
Ex: Multiplies one vector by a scalar and then adds it to another, a = b + scalar ∗ c

#pragma omp target teams distribute parallel for [simd]
for (j=0; j<N; j++)

a[j] = b[j] + scalar*c[j];

But you can delay data transfer:
// data transfer
#pragma omp target enter data map(to:a[0:N])
#pragma omp target enter data map(to:b[0:N])

#pragma omp target teams distribute parallel for [simd]
for (j=0; j<N; j++)

a[j] = b[j] + scalar*c[j];

// data transfer
#pragma omp target update from(a[0:N])

#pragma omp target exit data

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 18 / 24

OpenMP Implicit Data Offload
target offload program
int main() {

#define N 128
double x[N*N];
int i, j, k;
for (k=0; k<N*N; ++k) x[k] = k;

#pragma omp target
// OpenMP implicitly moves data btn host and gpu
// "x" mapped to and from
// Scalars are made firstprivate

// Distribute for-loop its btn teams
#pragma omp teams distribute
for (i=0; i<N; ++i) {

// Distribute for-loop its btn threads
#pragma omp parallel for
for (j=0; j<N; ++j) {

x[j+N*i] *= 2.0;
}

}
}

The target construct offloads the enclosed
code to the accelerator

The teams construct creates a league of teams

The distribute construct distributes the
outer loop iterations between the league of
teams

The parallel for combined construct creates
a thread team for each team and distributes
the inner loop iterations to threads

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 19 / 24

OpenMP Explicit Data Management

// Data management must be explicit when using
// pointer variables;
// Same pointer name used in host and device
// Programmer responsibility to keep the values
// consistent as needed.
// Data directives move data between host and
// device address spaces
#define N 100
double *p = malloc(N * sizeof(*p));

#pragma omp parallel for
for (int i=0; i<N; ++i) p[i] = 2.0;

#pragma omp target map(tofrom:p[0:N])
#pragma omp teams distribute parallel for
for (int i=0; i<N; ++i) p[i] *= 2.0;

Data management must be explicit when using
pointer variables

Same pointer name used in host and device
environments

Programmer responsibility to keep the values
consistent as needed

Data directives move data between host and
device address spaces

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 20 / 24

Unified Virtual Memory Support (OpenMP ≥ 5.0)

Single address space over CPU and GPU memories
Data migrated between CPU and GPU memories transparently to the application - no need to
explicitly copy data

#pragma omp requires unified_shared_memory
for (k=0; k < NTIMES; k++)
{

// No data directive needed for pointers a, b, c
#pragma omp target teams distribute parallel for
for (j=0; j<N; j++) {

a[j] = b[j] + scalar*c[j];
}

}

Only when the hardware supports it!

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 21 / 24

Conclusion GPU with OpenMP
Incremental parallel programming

Single source code for sequential and parallel programs
I Use compiler flag to enable or disable
I No major rrwrite of the serial code

(But mapping requires rewriting code if not using pointers for arrays, or defining mappers)

Works for both CPU and GPU/accelarators

On GPUs, must worry about data movement for performance.

Simpler programming model than lower level programming models

Alternatives: OpenACC, CUDA/HIP

References

"Introduction to Directive Based Programming on GPU", Helen He (Feb’20)
Using OpenMP with GPUs (pt 1)

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 22 / 24

https://www.nersc.gov/assets/Uploads/GPU-directives-20200228.pdf
https://www.youtube.com/watch?v=eOmb_e0wnmA

Course Conclusion

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 23 / 24

Course Recap PHY1610 (2023)

Best Practices in Scientific Computing

version control (git)
commenting
modular programming
testing
debugging

Reusing Existing Solutions

using libraries
rarray, STL, FFTW, BLAS, LAPACK, GSL
calling C functions in C++

Performance

profiling

file IO: NetCDF

performance metrics
(speedup, efficiency, throughput)

using clusters and schedulers

shared memory programming (OpenMP)

parallel programming (MPI)

heterogeneous computing (OpenMP)

If you haven’t yet, take some minutes to complete the course evaluation!
Thank you!

Ramses van Zon GPU Computing with Directives PHY1610 Winter 2024 24 / 24

	Programming Accelerators with OpenMP
	Course Conclusion

