
PHY1610 - Distributed Parallel Programming with MPI - part 3

Ramses van Zon

April 2, 2024

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 1 / 23

MPI Domain decomposition

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 2 / 23

Solving the diffusion equation with MPI

Consider a diffusion equation with an explicit finite-difference, time-marching method.
Imagine the problem is too large to fit in the memory of one node, so we need to do domain
decomposition, and use MPI.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 3 / 23

Discretizing Derivatives

Partial Differential Equations like the diffusion
equation

∂T

∂t
= D

∂2T

∂x2

are usually numerically solved by finite
differencing the discretized values.

Implicitly or explicitly involves interpolating
data and taking the derivative of the
interpolant.

Larger “stencils” → More accuracy.

∂2T

∂x2 ≈
Ti+1 − 2Ti + Ti−1

∆x2

i−2 i−1 i i+2

+1+1 −2

i+1

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 4 / 23

Diffusion equation in higher dimensions
Spatial grid separation: ∆x. Time step ∆t.
Grid indices: i, j. Time step index: (n)

1D

∂T

∂t

∣∣∣∣
i

≈
T

(n)
i − T

(n−1)
i

∆t

∂2T

∂x2

∣∣∣∣
i

≈
T

(n)
i−1 − 2T

(n)
i + T

(n)
i+1

∆x2

+1+1 −2

2D

+1+1

+1

+1

−4

∂T

∂t

∣∣∣∣
i,j

≈
T

(n)
i,j − T

(n−1)
i,j

∆t(
∂2T

∂x2 +
∂2T

∂y2

)∣∣∣∣
i,j

≈
T

(n)
i−1,j + T

(n)
i,j−1 − 4T

(n)
i,j + T

(n)
i+1,j + T

(n)
i,j+1

∆x2

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 5 / 23

Stencils and Boundaries
How do you deal with boundaries?

The stencil juts out, you need info on cells beyond those you’re updating.
Common solution: Guard cells

I Pad domain with these guard cells so that stencil works even for the first point in domain.
I Fill guard cells with values such that the required boundary conditions are met.

1D

2 30 1 4 5 6

Number of guard cells ng = 1

Loop from i = ng . . . N − 2ng.

2D

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 6 / 23

What does this have to do with MPI?

Guard cells will come in very very handy when parallelizing aplications whose domains are too large to fit
in memory or who need more cores than are available on one node.
For such applications, one often uses Domain decomposition as a strategy to MPI parallelize the
computation.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 7 / 23

Domain decomposition
A very common approach to
parallelizing on distributed
memory computers.
Subdivide the domain into
contiguous subdomains.
Give each subdomain to a
different MPI process.
No process contains the full
data!
Maintains locality.
Need mostly local data, ie.,
only data at the boundary of
each subdomain will need to
be sent between processes.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 8 / 23

Guard cell exchange

In the domain decomposition, the stencils will
jut out into a neighbouring subdomain.

Much like the boundary condition.

One uses guard cells for domain decomposition
too.

If we managed to fill the guard cell with values
from neighbouring domains, we can treat each
coupled subdomain as an isolated domain with
changing boundary conditions.

6 9 10 1185 7

2 30 1 4 5 6

Could use even/odd trick, or sendrecv.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 9 / 23

1D diffusion with MPI
Before MPI
a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = n+1;
for (int t=0;t<maxt;t++) {
T[guardleft] = 0.0;
T[guardright] = 0.0;
for (int i=1; i<=n; i++)

newT[i] = T[i] + a*(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)

T[i] = newT[i];
}

After MPI
MPI_Init(nullptr,nullptr);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);
left = rank-1; if(left<0)left=MPI_PROC_NULL;
right = rank+1; if(right>=size)right=MPI_PROC_NULL;
localn = n/size;
a = 0.25*dt/pow(dx,2);
guardleft = 0;
guardright = localn+1;
for (int t=0;t<maxt;t++) {
MPI_Sendrecv(&T[1], 1,MPI_DOUBLE,left, 11,

&T[guardright],1,MPI_DOUBLE,right,11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

MPI_Sendrecv(&T[nlocal], 1,MPI_DOUBLE,right,11,
&T[guardleft], 1,MPI_DOUBLE,left, 11,
MPI_COMM_WORLD,MPI_STATUS_IGNORE);

if (rank==0) T[guardleft] = 0.0;
if (rank==size-1) T[guardright] = 0.0;
for (int i=1; i<=localn; i++)

newT[i] = T[i] + a*(T[i+1]+T[i-1]-2*T[i]);
for (int i=1; i<=n; i++)

T[i] = newT[i];
}

Note:
the for-loop over i could also have been a call
to dgbmv for a submatrix.
the for-loop over i could also easily be
parallelized with OpenMP
(⇒ hybrid MPI-OpenMP code).

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 10 / 23

2D diffusion with MPI

How to divide the work in 2d?

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Less communication (18 edges).
Harder to program, non-contiguous data to
send, left, right, up and down.

Easier to code, similar to 1d, but with
contiguous guard cells to send up and down.
More communication (30 edges).

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 11 / 23

Let’s look at the easiest domain decomposition.
Serial :

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Parallel (P = 3):

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 12 / 23

Hybrid MPI+OpenMP

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 13 / 23

Hybrid MPI+OpenMP: Coding
This can be beneficial: pure MPI requires more communications and more memory
As far as coding is involved, that’s easy: use MPI calls and OpenMP directives.
Usually, the MPI part is the trickiest: do that first.

One has to initialize MPI differently, instead of
MPI_Init, use MPI_Init_thread:
int required = SOMETHING;
int provided;

MPI_Init_thread(&argc, &argv, required, &provided);

if (provided < required) exit(1);

Here, SOMETHING can be:
MPI_THREAD_SINGLE
Only one thread will execute.
MPI_THREAD_FUNNELED
Only the thread that called MPI_Init_thread
will make MPI calls.
MPI_THREAD_SERIALIZED
Only one thread will make MPI library calls
at one time.
MPI_THREAD_MULTIPLE
Multiple threads may call MPI
at once with no restrictions.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 14 / 23

Hybrid MPI+OpenMP: Running
You must be specific about the numbers to avoid overloading cores.
In scheduled jobs

The scheduler can help in this respect. E.g. with SLURM, with 16-core nodes, you can say
#SBATCH --nodes=3
#SBATCH --ntasks-per-node=2
#SBATCH --cpus-per-task=8

module load gcc openmpi
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
mpirun ./hybridcode # can use srun instead of mpirun too.

This gets 6 mpi processes spread over 3 nodes, each running 8 threads.

On login nodes or your own machine

E.g. to get 4 mpi processes on the node each running 3 threads, you’d do
$ module load gcc openmpi
$ export OMP_NUM_THREADS=3
$ mpirun -n 4 ./hybridcode

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 15 / 23

Hybrid: Which mix of MPI/OpenMP is best?

There are many, many aspects which factor into this decision.
While it’s true that many applications get their best performance from running in hybrid mode, the
precise balance of threads and processes is not always the same.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 16 / 23

Hybrid: Memory consideration

Every process has its own memory.
Even if data is distributed, each process has to have the executable loaded.
and there will be additional ghost cells
MPI will use internal buffers.

This would suggest using one process per node, and threads for the rest.
But:

The memory of the MPI processes tends to be closer to the cores.
No cache coherency slowdowns, like in OpenMP.
Less chance of race conditions.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 17 / 23

Hybrid: CPU considerations

Both processes and threads will be assigned to different cores on the CPU by the OS.
That is, as long as there are enough cores.
If you underutilize cores, the OS may move your process.
But it does not move the memory with it!
If your MPI computation keeps the cores busy, i.e., it’s pure MPI, the OS won’t see a reason to move
them.
In OpenMP, there are always serial portions, and the chance of “thread migration” is real.
In OpenMP, there are always serial portions, but in MPI, processes may be waiting for
communication or syncronization.

Nodes may have several CPUs in different sockets, e.g, the Teach cluster has 2 sockets with each an 8-core
CPU. These have their own caches and different parts of main memory that are closer to each socket.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 18 / 23

Binding
When running in hybrid mode, consider pinning a.k.a. binding processes and threads to specific cores.
OpenMP

There’s a few environment variables that control the binding of OpenMP Threads:
OMP_PROC_BIND=true tells openmp to perform binding of threads.
OMP_PLACES=X where X can be cores, threads or sockets, or a list of core numbers.

MPI

Binding is done with options to mpirun, but these differ per MPI implementation. For openmpi:
--map-by X, where X is hwthread, core, L1cache, L2cache, L3cache, socket, numa, or, board.
--report-bindings option to allows check the bindings

https://docs.open-mpi.org/en/v5.0.x/man-openmpi/man1/mpirun.1.html

Slurm

Some MPI implementations are integrated enough with the scheduler that it will “do the right thing” by
default, if you set ntasks_per_node. Still, be explicit if you can.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 19 / 23

https://docs.open-mpi.org/en/v5.0.x/man-openmpi/man1/mpirun.1.html

Hybrid: Communication considerations

Network

Often, nodes have one connection to the network.
If you have multiple MPI processes on a node, they share this connection.
Less processes may mean less communication, and less communication buffers, which can help.

Hybrid: I/O considerations

If the file system is a network file system, it has the same limitations.
If the file system is a single disk in the nodes, having several processes write at once can slow things down.
But network file systems are often parallel, when using multple nodes.
MPI can help here.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 20 / 23

You can use MPI to do IO in parallel

I/O is often the slowest part of a computing system.
Large HPC installations have parallel file systems to help
These have many disks on the back-end, enabling parallel reading and writing
As with many parallel technique, parallelization is not automatic

Solutions:
Could use a separate file for each process.

I But now output depends on #processes.
I Can lead to directory locking.

MPI-IO: Sub-library that enables binary parallel file I/O to single files from all processes.
HDF5 and NetCDF also allow parallel I/O if those libraries were built to support it.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 21 / 23

MPI-IO is similar to ordinary files

MPI_Offset offset = (msgsize*rank);

MPI_File file;
MPI_Status stat;

MPI_File_open(MPI_COMM_WORLD, "helloworld.txt",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &file);

MPI_File_seek(file, offset, MPI_SEEK_SET);
MPI_File_write(file, msg, msgsize, MPI_CHAR, &stat);
MPI_File_close(&file);

You have to control the data layout and what process gets to write where in the file!
One usually creates a so-called ‘File view’ to help with that.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 22 / 23

Another Example

MPI_Offset offset = (msgsize*rank);

MPI_File file;
MPI_Status stat;

MPI_File_open(MPI_COMM_WORLD, "helloworld.txt",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &file);

// Collective Coordinated Write
MPI_File_write_at_all(file, offset, msg, msgsize, MPI_CHAR, &stat);

MPI_File_close(&file);

Here, MPI-IO is similar to MPI collectives.

Ramses van Zon PHY1610 - Distributed Parallel Programming with MPI - part 3 April 2, 2024 23 / 23

	MPI Domain decomposition
	Hybrid MPI+OpenMP

