
BCH2203 Python - 11. Computer Vision

Ramses van Zon

27 March 2024

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 1 / 16



Announcements

Next weeks lecture, which would be our last, will be postponed to the week after.

So no lecture next week.

A last assignment will be posted some time next week.

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 2 / 16

http://www.scinethpc.ca


Computer Vision

. . . is focused on enabling machines to interpret and understand visual information from the real world.

In a biochemical context, this involves data from various forms of microscopy:

Confocal Microscopy
Fluorescence Microscopy
Electron Microscopy
Atomic Force Microscopy
Fluorescence Resonance Energy Transfer
Super-resolution microscopy

Beyond biochemistry, computer vision has healthcare, automotive, security, and entertainment
applications.

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 3 / 16

http://www.scinethpc.ca


What is OpenCV?

OpenCV is an open-source computer vision
and machine learning software library.

It provides a wide range of functionalities for
tasks such as:

I image and video analysis
I object detection and tracking
I facial recognition, and more.

OpenCV is written in C++ and has interfaces
for C++, Python, Java, and
MATLAB/Octave.

Its Python interface is compatible with numpy
and matplotlib.

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 4 / 16

http://www.scinethpc.ca


Installation and Setup
On your own computer

$ pip install opencv-python # consider a virtual env

or, which anaconda,
$ conda install opencv # consider a conda env

On the Teach cluster

$ ssh -X lcl_uotphy1610sXXXX@teach.scinet.utoronto.ca
$ module load gcc/13 python/3.11 opencv/4.9.0

X forwarding: The -X option to ssh is needed so graphics can appear back on your computer.

Testing in python

>>> import cv2
>>> print(cv2.__version__)

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 5 / 16

http://www.scinethpc.ca


Basic Image Operations
Loading and displaying images using OpenCV.
>>> img = cv2.imread('exp_A01_G001_0008.oir.png')
>>> cv2.imshow("cargo", img) # may fail on Teach
>>> cv2.waitKey(0) # so it shows up
>>> cv2.destroyAllWindows()

Source:
“Molecular determinants of large cargo transport into the nucleus”
https://idr.openmicroscopy.org/webclient/img_detail/9844391
DOI: 10.7554/eLife.55963

In Python, OpenCV images are Numpy arrays !

>>> print(type(img))
<class 'numpy.ndarray'>
>>> print(img.shape)
(583, 583, 3)

The latter are height, width and number of color channels.
Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 6 / 16

http://www.scinethpc.ca
https://idr.openmicroscopy.org/webclient/img_detail/9844391


Accessing and modifying pixel values.
We can use all numpy’s slicing and addressing tricks.
E.g. to crop to a portion of the image, slice it:
>>> h,w,c = img.shape
>>> cv2.imshow("image",img)
>>> subimg = img[h//4:-h//4,w//4:-w//4]
>>> cv2.imshow("sub-image",subimg)
>>> cv2.waitKey(0)

To set pixels, we can use img[row,col]. We can use slices as well.

E.g. to set our slice to all white:
>>> subimg[:,:] = (255,255,255)
>>> cv2.imshow("blanked-image", img)
>>> cv2.waitKey(0)

You can save the image with cv2.imwrite("FILENAME",img).

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 7 / 16

http://www.scinethpc.ca


Resizing and rotating images
To rotate by 90, 180, or 270 degrees:
>>> img1 = cv2.imread("exp_A01_G001_0008.oir.png")
>>> img2 = cv2.rotate(img,cv2.ROTATE_90_CLOCKWISE)
>>> img3 = cv2.rotate(img,cv2.ROTATE_180)
>>> img4 = cv2.rotate(img,cv2.ROTATE_90_COUNTERCLOCKWISE)

>>> import numpy as np
>>> cv2.imshow("rotate",np.hstack((img1,img2,img3,img4)))
>>> cv2.waitKey(0)

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 8 / 16

http://www.scinethpc.ca


Resize an image

>>> print(img1.shape)
(583, 583, 3)
>>> img6 = cv2.resize(img,(0,0),fx=0.5,fy=0.5)
>>> print(img3.shape)
(292, 292, 3)
>>> img7 = cv2.resize(img,(40,80))
>>> print(img2.shape)
(80, 40, 3)
>>> cv2.imshow("small",img6)
>>> cv2.imshow("smaller",img7)

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 9 / 16

http://www.scinethpc.ca


Understanding connection with Numpy

OpenCV works well in conjunction with numpy, but with an important subtlety:

In computer vision images:
I x coordinates run horizontal from left to right
I y coordinates run vertical from top to bottom
I x coordinates are given before y coordinates.

In numpy matrices:
I storage is row by row
I the row index runs vertically
I the column index runs horizontally
I the rows are indexed first, then the columns second.

As a result, an openCV image size of WIDTH by HEIGHT
corresponds to a numpy array of shape (HEIGHT,WIDTH).

I.e., coordinates given to opencv need to give the horizontal dimension first, vertical dimension second.
But working with the arrays, the vertical

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 10 / 16

http://www.scinethpc.ca


Color Spaces

OpenCV supports a number of ways to encode colors:

BRG (blue, green, red)
The default storage in openCV.

RGB (red, green, blue)
More commonly used outsize of openCV, e.g., by matplotlib.

HSV (hue, saturation, value)
This is are better for picking out similar colors.

Gray scale
Often better for detecting shapes.

(In fact OpenCV has many more, these are the most common ones).

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 11 / 16

http://www.scinethpc.ca


Converting between different color spaces
Color spaces and Matplotlib

Matplotlib’s imshow can also plot images, but the colors would be off, because of the BGR ordering.
import matplotlib.pyplot as plt

plt.imshow(img) # wrong colours
plt.pause(.1)

plt.imshow(img[:,:,[2,1,0]]) # correct colours
plt.pause(.1)

Color conversions routines

>>> imgrgb = cv2.cvtColor(imgbgr, cv2.COLOR_BGR2RGB)
>>> imghsv = cv2.cvtColor(imgbgr, cv2.COLOR_BGR2HSV)
>>> imggry = cv2.cvtColor(imgbgr, cv2.COLOR_BGR2GRAY)

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 12 / 16

http://www.scinethpc.ca


Image Filtering
Before processing an image, you may need to filter it or improve it.

Blur
>>> img = cv2.imread('exp_A01_G001_0008.oir.png), cv2.IMREAD_GRAYSCALE)
>>> imgmblur = cv2.medianBlur(img, 11)
>>> imggblur = cv2.GaussianBlur(img, (11,11),sigmaX=3.,sigmaY=3.)

The latter is weighted, the former better for edge detection.

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 13 / 16

http://www.scinethpc.ca


Image Thresholding
>>> img = cv2.imread('exp_A01_G001_0008.oir.png), cv2.IMREAD_GRAYSCALE)
>>> _, thresholded_image = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 14 / 16

http://www.scinethpc.ca


Other features:

Contours and Shape Detection
Image Transformation and Perspective Correction
Feature Detection and Description
Object Detection
Using pre-trained deep learning networks for object detection

And fun ones like:

Webcam processing
Video processing
Face detection
Motion detectin

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 15 / 16

http://www.scinethpc.ca


Further Resources

OpenCV’s documentation is very extensive with lots of examples:

https://docs.opencv.org/4.9.0/

If you want some real microscopy images to play with, see

https://idr.openmicroscopy.org/

Ramses van Zon BCH2203 Python - 11. Computer Vision 27 March 2024 16 / 16

http://www.scinethpc.ca
https://docs.opencv.org/4.9.0/
https://idr.openmicroscopy.org/

