
High Performance Scientific Computing with OpenMP, part 2

Ramses van Zon

PHY1610 Winter 2024

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 1 / 35

Loops

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 2 / 35

Loops in OpenMP

Lots of loops in scientific code. Let’s add a senseless loop:
#include <iostream>
#include <omp.h>
#include <string>
int main() {
#pragma omp parallel default(none) shared(std::cout)
{
int t = omp_get_thread_num();
for (int i=0; i<16; i++)
std::cout << "Thread " + std::to_string(t)

+ " gets i=" + std::to_string(i) + "\n";
}
}

What would you expect this to do with e.g. 2 threads?

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 3 / 35

This is what it does:
$ make omp-loop1
$ export OMP_NUM_THREADS=2
$./omp-loop1
Thread 0 gets i=0
Thread 0 gets i=1
Thread 0 gets i=2
Thread 1 gets i=0
Thread 0 gets i=3
Thread 1 gets i=1
Thread 0 gets i=4
Thread 1 gets i=2
Thread 0 gets i=5
Thread 1 gets i=3
Thread 0 gets i=6
Thread 1 gets i=4
Thread 0 gets i=7
Thread 1 gets i=5
Thread 0 gets i=8
Thread 1 gets i=6
Thread 0 gets i=9
Thread 1 gets i=7
Thread 0 gets i=10
Thread 1 gets i=8
Thread 0 gets i=11
Thread 1 gets i=9
Thread 0 gets i=12
Thread 1 gets i=10
Thread 0 gets i=13
Thread 1 gets i=11
Thread 0 gets i=14
Thread 1 gets i=12
Thread 0 gets i=15
Thread 1 gets i=13
Thread 1 gets i=14
Thread 1 gets i=15

Every thread executes all 16 cases!

Probably not what we want.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 4 / 35

Worksharing in OpenMP

We don’t generally want tasks to do exactly the same thing.

Want to divide a problem into pieces that threads works on.

OpenMP has a worksharing construct: omp for.
#include <iostream>
#include <omp.h>
#include <string>
int main() {

#pragma omp parallel default(none) shared(std::cout)
{
int t = omp_get_thread_num();
#pragma omp for
for (int i=0; i<16; i++)
std::cout << "Thread " + std::to_string(t)

+ " gets i=" + std::to_string(i) + "\n";
}

}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 5 / 35

Worksharing constructs in OpenMP

omp for construct breaks up the iterations by
thread.

If doesn’t divide evenly, does the best it can.

Allows easy breaking up of work!

Code need not know how many threads there
are; OpenMP does the work division for you.

$ make omp_loop2
$ export OMP_NUM_THREADS=2
$./omp_loop2
Thread 0 gets i=0
Thread 0 gets i=1
Thread 0 gets i=2
Thread 1 gets i=8
Thread 0 gets i=3
Thread 1 gets i=9
Thread 0 gets i=4
Thread 0 gets i=5
Thread 0 gets i=6
Thread 0 gets i=7
Thread 1 gets i=10
Thread 1 gets i=11
Thread 1 gets i=12
Thread 1 gets i=13
Thread 1 gets i=14
Thread 1 gets i=15

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 6 / 35

Less trivial example: DAXPY
#include <rarray>
#include "ticktock.h"

void init(rvector<double>& x, rvector<double>& y, rvector<double>& z);

void mydaxpy(double a, const rvector<double>& x,
const rvector<double>& y, rvector<double>& z);

int main()
{

int n = 10'000'1000;
rvector<double> x(n), y(n), z(n);
double a = 5./3.;
TickTock tt;
tt.tick();
init(x,y,z);
mydaxpy(a,x,y,z);
tt.tock("Tock registers");

}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 7 / 35

DAXPY - Function definitions
#include <algorithm>

// Initialize arrays x and y with iˆ2 and iˆ2-1, respectively
void init(rvector<double>& x, rvector<double>& y, rvector<double>& z) {

int n = std::min(x.size(), std::min(y.size(),z.size()));
for (int i=0; i<n; i++) {

x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);
z[i] = 0.0;

}
}
// Add a*x+y to z. x, y, and z are arrays and a is a scalar.
void mydaxpy(double a, const rvector<double>& x,

const rvector<double>& y, rvector<double>& z) {
int n = std::min(x.size(), std::min(y.size(),z.size()));
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

How would you OpenMP-parallelize this?

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 8 / 35

Parallelizing the loops

Things to consider when parallelizing:

Where is the concurrency?

I.e. what loops have independent iterations, so they may be done in parallel?

If we divide the work over threads, which variables do the threads need to know about?

Which ones are shared, which ones are to be private?

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 9 / 35

Parallel DAXPY
void init(rvector<double>& x, rvector<double>& y, rvector<double>& z) {

int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel default(none) shared(x,y,z,n)
{

#pragma omp for
for (int i=0; i<n; i++) {

x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);
z[i] = 0.0;

}
}

}
void mydaxpy(double a, const rvector<double>& x,

const rvector<double>& y, rvector<double>& z) {
int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel default(none) shared(x,y,a,z,n)
{

#pragma omp for
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 10 / 35

For your convenience

short-hand/combined pragmas

#pragma omp parallel

and

#pragma omp for

may be combined to

#pragma omp parallel for

Also note that instead of a code block with curly braces, a single line or a single loop with a single lines
can be a parallel region.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 11 / 35

Parallel DAXPY, simplifications
void init(rvector<double>& x, rvector<double>& y, rvector<double>& z) {

int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel default(none) shared(n,x,y)
{

#pragma omp for
for (int i=0; i<n; i++) {

x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);
z[i] = 0.0;

}
}

}
void mydaxpy(double a, const rvector<double>& x,

const rvector<double>& y, rvector<double>& z) {
int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel default(none) shared(n,x,y,a,z)
{

#pragma omp for
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 12 / 35

Parallel DAXPY, simplifications
void init(rvector<double>& x, rvector<double>& y, rvector<double>& z) {

int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel for default(none) shared(n,x,y)

for (int i=0; i<n; i++) {
x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);
z[i] = 0.0;

}

}
void mydaxpy(double a, const rvector<double>& x,

const rvector<double>& y, rvector<double>& z) {
int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel for default(none) shared(n,x,y,a,z)

for (int i=0; i<n; i++)
z[i] += a * x[i] + y[i];

}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 13 / 35

Parallel DAXPY, simplifications

void init(rvector<double>& x, rvector<double>& y, rvector<double>& z) {
int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel for default(none) shared(n,x,y)
for (int i=0; i<n; i++) {

x[i] = double(i)*double(i);
y[i] = double(i+1)*double(i-1);
z[i] = 0.0;

}
}
void mydaxpy(double a, const rvector<double>& x,

const rvector<double>& y, rvector<double>& z) {
int n = std::min(x.size(), std::min(y.size(),z.size()));
#pragma omp parallel for default(none) shared(n,x,y,a,z)
for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 14 / 35

Parallel DAXPY performance

$ debugjob --clean -n 16 # if on the Teach cluster
$ module load gcc/13
$ make mydaxpy
$./mydaxpy
Tock registers 0.3936 sec
$ make mydaxpy-parallel
$ export OMP_NUM_THREADS=16
$./mydaxpy-parallel
Tock registers 0.07156 sec

5.5 times faster!

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 15 / 35

Submitting OpenMP jobs to the scheduler

OpenMP uses shared memory, so you need to
stay on one node.

The application is a single process, so one task.

That application needs multiple CPUs for its
threads.

But that application still needs to be told how
many threads openmp should use.

You probably want to know how long it took.

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=16
#SBATCH --time=1:00:00
#SBATCH --output=openmp_output_%j.txt
#SBATCH --mail-type=FAIL

module load gcc/13

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

time ./mydaxpy-parallel

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 16 / 35

Reductions

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 17 / 35

Dot Product

Dot product of two vectors

Start from a serial implementation, then will
add OpenMP

Program tells answer, correct answer, time.

n = ~x · ~y =
∑

i

xi yi

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 18 / 35

Dot Product Code
// ndot_main.cc
#include <iostream>
#include <rarray>
#include "ticktock.h"
double ndot(const rvector<double>& x,

const rvector<double>& y);
int main()
{

int n = 20'000'000;
rvector<double> x(n), y(n);
for (int i=0; i<n; i++)

x[i]=y[i]=i;
double nn = n;
double ans = (nn-1)*nn*(2*nn-1)/6;
TickTock tt;
tt.tick();
double dot = ndot(x,y);
std::cout << "Dot product: " << dot << "\n"

<< "Exact answer: " << ans << "\n";
tt.tock("Took");

}

// serial_ndot.cc
#include <rarray>
#include <algorithm>
double ndot(const rvector<double>& x,

const rvector<double>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;

}

$ make serial_ndot
$./serial_ndot
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.1055 sec
$

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 19 / 35

Towards A Parallel Dot Product
We could clearly parallelize the loop.

We could make tot shared, then all threads can add to it.

// omp_ndot_race.cc
#include <rarray>
#include <algorithm>
double ndot(const rvector<double>& x,

const rvector<double>& y) {
int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

tot += x[i] * y[i];
return tot;
}

$ make omp_ndot_race
$ export OMP_NUM_THREADS=16
$./omp_ndot_race
Dot product: 2.64925e+20
Exact answer: 2.66667e+21
Took 0.5431 sec
$./omp_ndot_race
Dot product: 2.62621e+20
Exact answer: 2.66667e+21
Took 0.5383 sec

Wrong answer!

Answer varies!

Slower computation!

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 20 / 35

Our very first race condition!

Can be very subtle, and only appear intermittently.

Your program can have a bug but not display any symptoms for small runs!

Primarily a problem with shared memory.

Classical parallel bug.

Multiple writers to some shared resource.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 21 / 35

Race Condition Example
Say, initially, tot=0, and one threads want to add 1 to it while a second thread want to add 2 at the
same time.

The correct answer for tot is, clearly, three.

However, we may see any of the answers 1, 2, or 3.

How does this issue arise?

Non-atomic adding and updating

Thread 0: add 1 Thread 1: add 2
read tot=0 to reg0 .
reg0 = reg0+1 read tot=0 to reg1
store reg0(=1) in tot reg1 = reg1 + 2
. store reg1(=2) in tot

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 22 / 35

So it’s wrong, but why is it slower?

You might thing the parallel version should at least still be faster, though it may be wrong. But even
that’s not the case.

Here, multiple cores repeatedly try to read, access and store the same variable in memory.

This means the shared variable that is updated in a register, cannot stay in register: It has to be
copied back to main memory, so the other threads see it correctly.

The other threads then have to re-read the variable.

This write-back would not be necessary if the variable was shared but not written to.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 23 / 35

Memory hierarchy
Memory is layered: between registers and
shared main memory there are further layers
called caches.

Caches are faster but more expensive and
therefore smaller. They are like private
memory for each core.

Main memory is the slowest part of the
memory.

Caches are automatically kept coherent
between cores.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 24 / 35

Fixing the race condition

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 25 / 35

OpenMP critical construct
Our code get it wrong because different threads are updating the tot variable at the same time.

The critical construct:

Defines a critical region.
Only one thread can be operating within this region at a time.
Keeps modifications to shared resources safe.

// omp_ndot_critical.cc
#include <rarray>
#include <algorithm>
double ndot(const rvector<double>& x,

const rvector<double>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

#pragma omp critical
tot += x[i] * y[i];

return tot;
}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 26 / 35

Critical Construct Timing
// omp_ndot_critical.cc
#include <rarray>
#include <algorithm>
double ndot(const rvector<double>& x,

const rvector<double>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

#pragma omp critical
tot += x[i] * y[i];

return tot;
}

$ make omp_ndot_critical
$ export OMP_NUM_THREADS=16
$./omp_ndot_critical
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 4.6697 sec

Correct, but 44× slower than serial version!

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 27 / 35

OpenMP atomic construct
Most hardware has support for atomic instructions (indivisible so cannot get interrupted)
Small subset, but load/add/store usually in it.
Not as general as critical
Much lower overhead.
#pragma omp atomic [read|write|update|capture]

// omp_ndot_atomic.cc
#include <rarray>
#include <algorithm>
double ndot(const rvector<double>& x,

const rvector<double>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

#pragma omp atomic update
tot += x[i] * y[i];

return tot;
}

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 28 / 35

Atomic Construct Timing
// omp_ndot_atomic.cc
#include <rarray>
#include <algorithm>
double ndot(const rvector<double>& x,

const rvector<double>& y)
{

int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel for default(none) shared(n,tot,x,y)
for (int i=0; i<n; i++)

#pragma omp atomic update
tot += x[i] * y[i];

return tot;
}

$ make omp_ndot_atomic
$ export OMP_NUM_THREADS=16
$./omp_ndot_atomic
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 2.177 sec

About twice faster than critical, but still not great.
Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 29 / 35

Local Sums
The issue we have not resolved is that we’re still updating tot, which causes copies to main memory at
every iteration.

What if we accumulated tot for each core, and sum them up later?

double ndot(const rvector<double>& x,
const rvector<double>& y)

{
int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp parallel default(none) shared(n,tot,x,y)
{
double localtot=0;
#pragma omp for
for (int i=0; i<n; i++)
localtot += x[i] * y[i];

#pragma omp atomic update
tot += localtot;

}
return tot;
}

$ export OMP_NUM_THREADS=16
$./omp_ndot_local
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.01715 sec

Correct answer, 6x faster!

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 30 / 35

OpenMP Reduction Operations
What we did is quite common, taking a bunch
of data and summing it to one value:
reduction

OpenMP supports this using reduction
variables.

When declaring a variables as reduction
variables, private copies are made (much as for
private variables), which are combined at the
end of a parallel region through some
operation (+, *, min, max).

omp_ndot_reduction.cc

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 31 / 35

Reduction Timing
// omp_ndot_reduction.cc
#include <rarray>
#include <algorithm>
double ndot(const rvector<double>& x,

const rvector<double>& y)
{
int n = std::min(x.size(), y.size());
double tot=0;
#pragma omp for default(none) shared(n,x,y) reduction(+:tot)
for (int i=0; i<n; i++)
tot += x[i] * y[i];

return tot;
}

$ make omp_ndot_reduction
$ export OMP_NUM_THREADS=8
$./omp_ndot_reduction
Dot product: 2.66667e+21
Exact answer: 2.66667e+21
Took 0.01691 sec
$

Correct, same timing as local sums, but
simpler code.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 32 / 35

Load Balancing

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 33 / 35

Scheduling constructs in OpenMP

Default: each thread gets a big consecutive chunk of the loop. Often better to give each thread
many smaller interleaved chunks.

Can add schedule clause to omp for to change work sharing.

We can decide either at compile-time (static schedule) or run-time (dynamic schedule) how work will
be split.

#pragma omp parallel for schedule(static, m) gives m consecutive loop elements to each
thread instead of a big chunk.

With schedule(dynamic, m), each thread will work through m loop elements, then go to the
OpenMP run-time system and ask for more.

Load balancing (possibly) better with dynamic, but larger overhead than
with static.

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 34 / 35

More. . .

There are many more features to OpenMP we have not discussed.

Collapsed loops

Tasks

Tasks with dependencies

Nested OpenMP parallelism

Locks

SIMD

Thread affinities

Compute devices (e.g. NVIDIA/AMD graphics cards, Intel Xeon Phi)

Ramses van Zon High Performance Scientific Computing with OpenMP, part 2 PHY1610 Winter 2024 35 / 35

	Loops
	Reductions
	Fixing the race condition
	Load Balancing

