
High Performance Scientific Computing with OpenMP

Ramses van Zon

PHY1610 - Winter 2024

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 1 / 26

Using HPC clusters

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 2 / 26

Login and compute nodes

So far, you’ve been running short computations on the Teach login node.

But most clusters (incl. Teach) consists of at least two functionality different nodes.

Login nodes where you develop, edit, compile, prepare and submit jobs. You share its resources with
other students and courses.

Compute nodes where real computations should run.

The login nodes and compute nodes have the same architecture, operating system, and software
stack.

To run on the compute nodes, you must submit a batch job.

When running this way, your job get dedicated resources: no contention, less timing fluctuations.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 3 / 26

Storage Systems and Locations on SciNet systems

You have a home and scratch directory on the
system, whose locations will be given by

$HOME=/home/g/groupname/username

$SCRATCH=/scratch/g/groupname/username

Use these convenient environment variables!

teach01:~$ pwd
/home/s/scinet/rzon
teach01:~$ echo $HOME
/home/s/scinet/rzon
teach01:~$ cd $SCRATCH
teach01:~$ pwd
/scratch/s/scinet/rzon

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 4 / 26

Testing

You should test your code before you submit it to the cluster to know if your code is correct and what
kind of resources you need.

Small test jobs can be run on the login nodes.

Rule of thumb: couple of minutes, taking at most about 1-2GB of memory, couple of cores.

Short tests that do not fit on a login node, or for which you need a dedicated node or set of cores,
request an interactive debug job with the debugjob command

teach01:~$ debugjob -n 2
debugjob: Requesting 1 nodes with 2 tasks for 240 minutes and 0 seconds
SALLOC: Granted job allocation 202753
SALLOC: Waiting for resource configuration
SALLOC: Nodes teach35 are ready for job
teach35:~$ nproc
2
teach35:~$

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 5 / 26

The Scheduler

The scheduler is a program that organizes the work load on the cluster.

You submit a request to the scheduler, and it will find the right moment for your request to run.

It does that by looking at the resources available, your priority, times and resources requested, . . .

Even when we run interactively, we are requesting resources to the scheduler

Submitting jobs

Teach (as well as all other SciNet and Alliance systems) uses SLURM as its job scheduler.

You submit jobs from a login node by passing a job script to the sbatch command:
teach01:~$ cd $SCRATCH
teach01:scratch$ sbatch jobscript.sh

This puts the job in the queue. It will run on the compute nodes in due course.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 6 / 26

Restrictions

You cannot submit arbitrary jobs:

Maximum walltime is 24 hours.

home is read-only on compute nodes:
Jobs must write to your scratch directory

Compute nodes have no internet access:
Download data you need beforehand on a login node.

Different clusters have different restrictions.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 7 / 26

Example submission script

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntask=1
#SBATCH --cpus-per-task=1
#SBATCH --time=1:00:00
#SBATCH --output=serial_output_%j.txt
#SBATCH --mail-type=FAIL

module load gcc/13

./serial_code 1

teach01:scratch$ sbatch serial_job.sh

First line indicates that this is a bash script.

Lines starting with #SBATCH go to SLURM.

sbatch reads these lines as a job request.

In this case, SLURM looks for one core to be
used for one task, for 1 hour.

Once SLURM finds a node with an unused
core, the script is run there in a clean
environment.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 8 / 26

Monitoring jobs

Once the job is incorporated into the queue, there are some command you can use to monitor its progress.

”squeue --me“ to show your jobs in the job queue.

”squeue --start -j JOBID“ to get an estimate for when a job will run.

”jobperf JOBID“ to get an instantaneous view of the cpu+memory usage of a running job’s nodes.

”scancel JOBID“ to cancel the job.

”sacct“ to get information on your recent jobs.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 9 / 26

Shared Memory Programming

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 10 / 26

Shared Memory
Remember the paradigm:

One large blob of memory, different computing
cores acting on it. All ‘see’ the same data.

Any coordination done through memory.

Could use message passing, but no need.

Each code is assigned a thread of execution of
a single program that acts on the data.

Core 3 Core 1

Core 7Core 5

Core 6

Core 2

Core 0Core 4

MEMORY

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 11 / 26

OpenMP

For on-node, performant, portable parallel code

E.g. multi-core, shared memory systems.
But also GPU offloading

Add parallelism to functioning serial code.

https://openmp.org

Compiler, run-time environment does a lot of work for us
(divides up work)

But we have to tell it what to run in parallel and how to use
variables.

Works by adding compiler directives to C, C++, or Fortran
code

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 12 / 26

https://openmp.org

OpenMP basic operations
In code:

In C++, you add lines starting with #pragma omp
This parallelizes the subsequent code block.

When compiling:

To turn on OpenMP support, add -fopenmp to the compilation and link commands.

When running:

The environment variable OMP_NUM_THREADS sets how many threads are to be used in parallel blocks.

$ cd $SCRATCH
$ git clone /scinet/course/phy1610/omp
$ cd omp
$ source setup
$ make omp-hello-world

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 13 / 26

OpenMP example

#include <iostream>
#include <omp.h>
#include <string>
using namespace std;
int main() {

cout << "At start of program\n";
#pragma omp parallel
{

cout << "Hello world from thread "
+ to_string(omp_get_thread_num()) + "!\n";

}
}

$ g++ -std=c++17 -O2 -o omp-hello-world omp-hello-world.cc -fopenmp
$ #(or make omp-hello-world)
$ export OMP_NUM_THREADS=1
$./omp-hello-world

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 14 / 26

Output from OpenMP hello world

$ export OMP_NUM_THREADS=1
$./omp-hello-world
At start of program
Hello world from thread 0!

$ export OMP_NUM_THREADS=8
$./omp-hello-world
At start of program
Hello world from thread 0!
Hello world from thread 6!
Hello world from thread 3!
Hello world from thread 1!
Hello world from thread 7!
Hello world from thread 4!
Hello world from thread 5!
Hello world from thread 2!

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 15 / 26

What happened precisely?

$ export OMP_NUM_THREADS=1
$./omp-hello-world
At start of program
Hello world from thread 0!

$ export OMP_NUM_THREADS=8
$./omp-hello-world
At start of program
Hello world from thread 0!
Hello world from thread 6!
Hello world from thread 3!
Hello world from thread 1!
Hello world from thread 7!
Hello world from thread 4!
Hello world from thread 5!
Hello world from thread 2!

#include <iostream>
#include <omp.h>
#include <string>
using namespace std;
int main() {
cout << "At start of program\n";
#pragma omp parallel
{

cout << "Hello world from thread "
+ to_string(omp_get_thread_num()) + "!\n";

}
}

Threads were launched.
Each prints Hello, world ...
In seemingly random order.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 16 / 26

Running OpenMP batch jobs on the Teach cluster
Running parallel codes on the login node will quickly cause its cores to be oversubscribed.

Scaling and timing experiments are unreliable on the shared login node.

The Teach cluster has 40 other nodes, each with 16 cores, called the compute nodes.

For short interactive test, get access to compute nodes using debugjob, e.g., for 8 cores:
debugjob -n 8

For larger runs or test, you must submit a jobscript to the scheduler with sbatch:
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8
#SBATCH --time=1:00:00
#SBATCH --output=openmp_output_%j.txt
module load gcc/13
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
./openmp_example

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 17 / 26

OpenMP: Language extension + a library

#pragma omp gives the language extensions

#include <omp.h> give access to library functions, such as

int omp_get_num_threads(); // number of threads currently running

int omp_get_thread_num(); // index of the current threads (starts at 0)

void omp_set_num_threads(int n); // number of threads to be used at the next parallel section

int omp_get_num_procs(); // get maximum number of processors

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 18 / 26

New example

#include <iostream>
#include <omp.h>
#include <string>
using namespace std;
int main()
{

cout << "At start of program\n";

#pragma omp parallel
{

cout << "Hello world from thread "
+ to_string(omp_get_thread_num())
+ "!\n";

}

cout << "There were "
+ to_string(omp_get_num_threads())
+ " threads.\n";

}

$ make omp-num-threads2
$ export OMP_NUM_THREADS=3
$./omp-num-threads2

At start of program
Hello world from thread 0!
Hello world from thread 1!
Hello world from thread 2!
There were 1 threads.

Strange, says: ‘There were 1 threads.’. Why?

Because that is true outside the parallel region!

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 19 / 26

Variables to the rescue!
omp_get_num_threads only returns the number of threads inside current region.

Let’s try to store the result of omp_get_num_threads to a variable.
#include <iostream>
#include <omp.h>
int main() {

int nthreads, t;
#pragma omp parallel \

default(none) \
shared(nthreads) \
private(t)

{
t = omp_get_thread_num();
if (t == 0)

nthreads = omp_get_num_threads();
}
std::cout << "There were " << nthreads << " threads.\n";

}

What are these extra shared and private clauses?

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 20 / 26

Shared and Private Variables

Shared Variables

A variable designated as shared can be accessed by all threads.

For reading variable values, this is very convenient.

For assigning to variables, this introduces potential race conditions.

Private Variables

If a variable is designated as private, each thread gets its own separate version of the variable.

Different threads cannot see other threads’ versions.

Thread-private versions do not have the value of the variable outside the parallel loop.

The thread-private versions cease to exists after the parallel region.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 21 / 26

default(none)

If a variable is not designated as either shared or private, the compiler chooses.

That may seem like a nice feature, but try not to rely on this!

With default(none), compilation fails if undesignated variables are used in parallel regions.

This is a good thing; it tells you that you have not thought about the role of your variables inside the
parallel region.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 22 / 26

What happens now?

#include <iostream>
#include <omp.h>
int main() {

int nthreads, t;
#pragma omp parallel \

default(none) \
shared(nthreads) \
private(t)

{
t = omp_get_thread_num();
if (t == 0)

nthreads = omp_get_num_threads();
}
std::cout << "There were "

<< nthreads
<< " threads.\n";

}

$ make omp-num-threads3
$ export OMP_NUM_THREADS=3
$./omp-num-threads3
There were 3 threads.

Program runs, lauches threads.
Each thread gets copy of t.
Only thread 0 writes to nthreads.

Tip: Declare private variables, such as t, as local
variables.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 23 / 26

What happens now?

#include <iostream>
#include <omp.h>
int main() {

int nthreads;
#pragma omp parallel \

default(none) \
shared(nthreads)

{
int t = omp_get_thread_num();
if (t == 0)

nthreads = omp_get_num_threads();
}
std::cout << "There were "

<< nthreads
<< " threads.\n";

}

$ make omp-num-threads3
$ export OMP_NUM_THREADS=3
$./omp-num-threads3
There were 3 threads.

Program runs, lauches threads.
Each thread gets copy of t.
Only thread 0 writes to nthreads.

Tip: Declare private variables, such as t, as local
variables.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 24 / 26

Single Execution
We do not care which thread sets nthreads.

Might as well be the first thread that gets to it.

OpenMP has a construct for this:
#include <iostream>
#include <omp.h>
int main()
{

int nthreads;
#pragma omp parallel default(none) shared(nthreads)
#pragma omp single
nthreads = omp_get_num_threads();
std::cout << "There were " << nthreads << " threads.\n";

}

$ make omp-num-threads5
$ export OMP_NUM_THREADS=3
$./omp-num-threads5
There were 3 threads.

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 25 / 26

More. . .

There is much more to be said about OpenMP.

Next lecture we also be about OpenMP and we will look at:

Loops and work-sharing

Reductions

Load balancing

Ramses van Zon High Performance Scientific Computing with OpenMP PHY1610 - Winter 2024 26 / 26

	Using HPC clusters
	Shared Memory Programming

