
Intro to Parallel Computing

Ramses van Zon

PHY1610 Winter 2024

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 1 / 34



Motivation for Parallel Computing

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 2 / 34



Why is Parallel Computing necessary?

Big Data:
Modern experiments and observations yield vastly more data to be processed than in the past.

Big Science:
As more computing resources become available, the bar for cutting edge simulations is raised.

New Science:
which before could not even be done, now becomes reachable.

However:

Advances in processor clock speeds, bigger and faster memory and disks have been lagging as
compared to fifteen years ago. We can no longer “just wait a year” and get a better computer.

So more computing resources here means: more cores running concurrently.

Even most laptops now have 2 cpu cores or more.

So parallel computing is necessary.

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 3 / 34



Wait, what about Moore’s Law?

https://ourworldindata.org/grapher/transistors-per-microprocessor?time=1971..2021

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 4 / 34

https://ourworldindata.org/grapher/transistors-per-microprocessor?time=1971..2021


Wait, what about Moore’s Law?
Moore’s Law:

. . . describes a long-term trend in the history of computing hard-
ware. The number of transistors that can be placed inexpensively
on an integrated circuit doubles approximately every two years.

(source: Moore’s law, wikipedia)

But. . .

Moore’s Law doesn’t promise us increasing clock speed.

We’ve gotten more transistors but it’s getting hard to push clock-speed up.
Power density is the limiting factor.

So we’ve gotten more cores at a fixed clock speed.

(Also, it is physically reaching its limits)

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 5 / 34



Wait, what about Moore’s Law?

The plot on the left shows not just the number of
transistors, which follows Moore’s law, but also how
clock speeds and power demands have grown.

All curves flatten except the transitor count.

This shows that the continuation of Moore’s law is
due to the presence of multiple cores, which require
parallel programming.

(source: www.extremetech.com)

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 6 / 34



Concurrency

All these cores need something to do.

We need to find parts of the program that can
done independently, and therefore on different
cores concurrently.

We would like there to be many such parts.

Ideally, the order of execution should not
matter either.

However, data dependencies limit concurrency.

(source: http://flickr.com/photos/splorp)

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 7 / 34



Parallel computing

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 8 / 34



Parameter study: best case scenario

Suppose the aim is to get results from a model
as a parameter varies.

We can run the serial program on each
processor at the same time.

Thus we get ‘more’ done.

µ = 1

Answer

µ = 2

Answer

µ = 3

Answer

µ = 4

Answer

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 9 / 34



Throughput
How many tasks can you do per unit time? throughput = H = N

T

N is the number of tasks, T is the total time.

Maximizing H means that you can do as much as possible.

Independent tasks: using P processors increases H by a factor of P .

Answer

T = NT1

H = 1/T1

Answer Answer Answer Answer

T = NT1/P

H = P/T1

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 10 / 34



Scaling

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 11 / 34



Scaling: Throughput

How a given problem’s throughput scales as
processor number increases is called strong
scaling

In the previous case, linear scaling:

H ∝ P

This is perfect scaling. These are called
“embarrassingly parallel” calculations.

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 12 / 34



Scaling: Speedup

Speedup: how much faster the problem is
solved as processor number increases.

This is measured by the serial time divided by
the parallel time

S =
Tserial

T (P )

For embarrassingly parallel applications,
S ∝ P : linear speed up.

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 13 / 34



Non-ideal cases
Say we want to integrate some tabulated
experimental data.

Integration can be split up, so different regions
are summed by each processor.

Non-ideal:
I We first need to get data to each processor.
I At the end we need to bring together all the

sums: reduction.

Partition data

R1 R2 R3 R4

Reduction

Answer

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 14 / 34



Non-ideal cases
Partition data

R1 R2 R3 R4

Reduction

Answer

Parallel overhead

Serial portion

Parallel region

Perfectly parallel
(for large N)

Suppose non-parallel part is constant: Ts

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 15 / 34



Amdahl’s law

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 16 / 34



Amdahl’s law
Speed-up (without parallel overhead):

S =
Tserial

T (P )
=
NT1 + Ts

NT1
P

+ Ts

or, calling f = Ts/(Ts +NT1) the serial fraction,

S =
1

f + (1− f)/P
P →∞−→

1
f

f = 5%

The serial part dominates asymptotically.
The speed-up is limited, no matter what size of P .

Aim to structure your program to minimize the serial portions of the code!

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 17 / 34



Scaling efficiency

Speed-up compared to ideal factor P :

Efficiency =
S

P

This will invariably fall off for larger P , except for embarrassingly parallel problems.

Efficiency ∼
1
fP

P →∞−→ 0

You cannot get 100% efficiency in any non-trivial problem.\[0.3cm]

All you can aim for here is to make the efficiency as high as possible.

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 18 / 34



Hardware Architectures

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 19 / 34



Supercomputer architectures

Supercomputer architectures comes in a number of different types:

Clusters, or distributed-memory machines, are in essence a bunch of desktops linked together by a
network (“interconnect”). Easy and cheap.

Multi-core machines, or shared-memory machines, are a collection of processors that can see and use
the same memory. Limited number of cores, and much more expensive when the machine is large.

Accelerator machines, are machines which contain an “off-host” accelerator, such as a GPGPU or
Xeon Phi, that is used for computation. Quite fast, but complicated to program.

Vector machines were the early supercomputers. Very expensive, especially at scale. These days most
chips have some low-level vectorization, but you rarely need to worry about it.

Most supercomputers are a hybrid combo of these different architectures.

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 20 / 34



Distributed Memory: Clusters
Clusters are the simplest type of parallel computer
to build:

Take existing powerful standalone computers,

and network them.

Easy to build and easy to expand.

SciNet’s Niagara supercomputer and the teach
cluster are examples.

(source: http://flickr.com/photos/eurleif)

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 21 / 34



Compute Resources at SciNet

Teach Cluster

Number of nodes: 42
Interconnect: Infiniband
RAM/node: 64 GB
Cores/node: 16

Niagara

Number of nodes: 2,000
Interconnect: Dragonfly+
RAM/node: 202 GB
Cores/node: 40

Mist

Number of nodes: 54
Interconnect: Dragonfly+
RAM/node: 256 GB
Cores/node: 32
GPUs/node: 4 V100

Rouge

Number of nodes: 20
Interconnect: Dragonfly+
RAM/node: 512 GB
Cores/node: 48
GPUs/node: 8 MI50

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 22 / 34

https://docs.scinet.utoronto.ca/index.php/Teach
https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart
https://docs.scinet.utoronto.ca/index.php/Mist
https://docs.scinet.utoronto.ca/index.php/Rouge


Distributed Memory: Clusters

Each processor is independent! Programs run
on separate processors, communicating with
each other when necessary. Each processor has
its own memory! Whenever it needs data from
another processor, that processor needs to
send it.

All communication must be
hand-coded:~harder to program.

MPI programming is used in this scenario. ~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��


��
���

?

�
�

�
�	

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 23 / 34



Shared memory

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 24 / 34



Shared Memory

Different processors acting on one large bank
of memory. All processors “see” the same data.

All coordination/communication is done
through memory.

Each core is assigned a thread of execution of
a single program that acts on the data.

Your desktop uses this architecture, if it’s
multi-core.

Can also use hyper-threading: assigning more
than one thread to a given core.

OpenMP is used in this scenario.

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 25 / 34



Threads versus Processes

Threads Threads of execution within one
process, with access to the same
memory etc.

Processes Independent tasks with their own
memory and resources

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 26 / 34



Share memory communication cost

Interconnect Latency Bandwidth
Gigabit Ethernet 10µs (10,000 ns) 1 Gb/s (60 ns/double)
Infiniband 2µs (2,000 ns) 2-10 Gb/s (10 ns/double)
NUMA (shared memory) 0.1µs (100 ns) 10-20 Gb/s (4 ns/double)

Processor speed: O(GFlop) ∼ a few ns or less.

Communication is always the slowest part of your calculation!

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 27 / 34



Hybrid systems

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 28 / 34



Hybrid architectures

Multicore nodes linked together with an
(high-speed interconnect.

Many cores have modest vector capabilities.

Teach cluster has sixteen cores, and 64 GB of
memory, per node.

Niagara has forty cores, and 202 GB of
memory, per node.

OpenMP + MPI can be used in this scenario.

Memory Memory

Memory Memory

Memory Memory

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 29 / 34



Hybrid architectures: accelerators

Multicore nodes linked together with an
(high-speed) interconnect.

Nodes also contain one or more accelerators,
e.g. GPUs.

These are specialized, super-threaded
(500-2000+) processors.

Specialized programming languages, CUDA
and OpenCL, are used to program these
devices.

Can be combined with MPI and OpenMP.

Memory Memory

Memory Memory

Memory Memory

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 30 / 34



Programming approaches

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 31 / 34



Choosing your programming approach

The programming approach you use depends on the type of problem you have, and the type of machine
that you will be using:

Embarrassingly parallel applications: scripting, GNU Parallel1.

Shared memory machine: OpenMP, p-threads.

Distributed memory machine: MPI, PGAS (UPC, Coarray Fortran).

Graphics computing: CUDA, OpenACC, OpenCL.

Hybrid combinations.

We focus on OpenMP and MPI programming.

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login; The USENIX Magazine, February 2011:42-47.

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 32 / 34



What’s your bottleneck?
The programming approach you should use also depends upon the type of problem that is being solved:

Computation bound
I Need to focus on parallel processes/threads.
I These processes may have very different computations to do.
I Bring the data to the computation.

Data bound, requires data parallelism
I There focus here is the operations on a large dataset.
I The dataset is often an array, partitioned and tasks act on separate partitions.
I Bring the computation to the data.

I/O bound, requires file system parallelism
I Reduce IOPs
I Keep data in memory
I Data reuse
I Bring the computation to the data.

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 33 / 34



Summary

You need to learn parallel programming to truly use the hardware that you have at your disposal.

The serial only portions of your code will truly reduce the effectiveness of the parallelism of your
algorithm. Minimize them.

There are many different hardware types available: distributed-memory cluster, shared-memory, gpu,
hybrid.

The programming approach you need to use depends on the nature of your problem.

Ramses van Zon Intro to Parallel Computing PHY1610 Winter 2024 34 / 34


	Motivation for Parallel Computing
	Parallel computing
	Scaling
	Amdahl's law
	Hardware Architectures
	Shared memory
	Hybrid systems
	Programming approaches

