
BCH2203 Python - 9. Subprocess

Ramses van Zon

13 March 2024

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 1 / 22

In this lecture

Last lecture, we saw how to call blast from Python using Bio.Blast.Applications.
>>> from Bio.Blast.Applications import NcbiblastnCommandline
>>> blastn_cmdline = NcbiblastnCommandline(query="dna.fasta", db="nt", evalue=0.001,

outfmt=5, out="dna.xml")
>>> stdout, stderr = blastn_cmdline()

>>> from Bio.Blast.Applications import NcbiblastnCommandline
_init__.py:40: BiopythonDeprecationWarning: The Bio.Application modules and modules relying on it have been deprecated.

Due to the on going maintenance burden of keeping command line application
wrappers up to date, we have decided to deprecate and eventually remove these
modules.

We instead now recommend building your command line and invoking it directly
with the subprocess module.

warnings.warn(
>>> blastn_cmdline = NcbiblastnCommandline(query="dna.fasta", db="nt", evalue=0.001,

outfmt=5, out="dna.xml")
>>> stdout, stderr = blastn_cmdline()

Looks like we got it wrong, this is now deprecated.

Instead, the Biopython documentation recommends using subprocess.

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 2 / 22

http://www.scinethpc.ca

1

Subprocess

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 3 / 22

First, what are processes?

When Python runs, it is a process. When blastn runs, it is a process. When the shell runs, it is a process.

Processes are managed and started by the operating system (OS).
Many processes can run at the same time.

The OS gives each process its own, private resources like memory.

The OS reclaims those resources when the process ends.

Processes can start other processes. These are called child processes or subprocesses.
E.g. the shell can start python.

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 4 / 22

http://www.scinethpc.ca

Inter-Process Communication
There are various ways for processes to communicate (including with subprocesses)

Input
1 Commmand line arguments when starting the (sub)process
2 Reading files.

Usually the the start of a (sub)process.
3 Pipes, which use shared memory. This is a generalization of keyboard input.

Output
1 Printing to screen.

Turns out to work via these Pipes too.
2 Output to a file. Usually the end of a (sub) process
3 Returning an exit code. (a number between 0 and 255).

How these work exactly depends on the OS, but there is a Python module that abstracts that out.
Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 5 / 22

http://www.scinethpc.ca

The subprocess module
import subprocess

This Python module’s purpose is to launch subprocesses. These do not need to be python scripts.

It contains a “Popen” class to handle subprocesses.

Often, one uses this class through one of the following functions:
subprocess.run()
subprocess.check_output()
subprocess.call()
subprocess.check_call()

The first two are most common for python 3.5+, the latter two were useful for older python versions.

These functions have many arguments, mostly to do with the interprocess communication.

Note:
subprocess replaces older ways that have issues, e.g. os.system, os.spawn, os.popen, popen2.

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 6 / 22

http://www.scinethpc.ca

Let’s start simple
>>> import subprocess
>>> subprocess.run("ls")
darktheme.tex lecture09_subprocess.pdf mds
lecture09_subprocess.tex SciNetLogoTransparent.png lecture09_subprocess.theme
lecture09_subprocess.md Makefile
CompletedProcess(args='ls', returncode=0)
>>>

Here, subprocess.run("ls") called the ls application.

This suggests to just give a string with a command. But no:
>>> subprocess.run("ls mds")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/usr/lib/python3.10/subprocess.py", line 503, in run

with Popen(*popenargs, **kwargs) as process:
File "/usr/lib/python3.10/subprocess.py", line 971, in __init__

self._execute_child(args, executable, preexec_fn, close_fds,
File "/usr/lib/python3.10/subprocess.py", line 1863, in _execute_child

raise child_exception_type(errno_num, err_msg, err_filename)
FileNotFoundError: [Errno 2] No such file or directory: 'ls mds'

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 7 / 22

http://www.scinethpc.ca

Command line arguments
Cannot give application with spaces to pass arguments.

When getting command line arguments in our python scripts, we use sys.argv, which is a list.

Likewise, to give command line arguments to subprocess.run, you pass it a list:
>>> subprocess.run(["ls","mds"])
mds
CompletedProcess(args=['ls', 'mds'], returncode=0)

We see we get two kinds of output:

Output to console

Whatever the command would have printed on
console, still is.

A ‘CompletedProcess’ with a returncode

If zero, this mean all went well.

If non-zero, there was an error.

Our scripts can also give exit codes with
exit(NUMBER).

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 8 / 22

http://www.scinethpc.ca

Capturing the console output
What if we want to store the console output in a variable?

This does not work:
>>> result = subprocess.run(["ls","mds"])
mds
>>> print(result)
CompletedProcess(args=['ls', 'mds'], returncode=0)

Because we just get the CompletedProcess in result. The output still goes to the console.

Instead, we should add the option capture_output=True:
>>> result = subprocess.run(["ls","mds"],capture_output=True)
>>> print(result)
CompletedProcess(args=['ls', 'mds'], returncode=0, stdout=b'mds\n', stderr=b'')
>>> print(result.stdout)
b'mds\n'
>>> print(result.stdout.decode())
mds

>>>

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 9 / 22

http://www.scinethpc.ca

Shortcut to capture output

The following are equivalent
>>> result = subprocess.run(["ls","mds"], capture_output=True).stdout
>>> print(result)
b'mds\n'
>>> print(result.decode())
mds

>>>

and
>>> result = subprocess.check_output(["ls","mds"])
>>> print(result)
b'mds\n'
>>> print(result.decode())
mds

>>>

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 10 / 22

http://www.scinethpc.ca

Shortcut to capture output, except. . .

With check_output, you don’t get the exit code, nor any error messages.

But if check_output detects an error, an exception is thrown (whereas run does not).

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 11 / 22

http://www.scinethpc.ca

Shortcut to get output as a string

The above are further equivalent to:
>>> result = subprocess.run(["ls","mds"], capture_output=True, text=True).stdout
>>> print(result)
mds

>>>

and
>>> result = subprocess.check_output(["ls","mds"], text=True)
>>> print(result)
mds

>>>

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 12 / 22

http://www.scinethpc.ca

Input
So we can get the output into a string in python.
What it the application we are calling needs (keyboard) input?

Both run and check_output have an ‘input’ parameters for that:

>>> import sys
>>> result = subprocess.run([sys.executable,

"-c",
"print(input())"],
text=True,
capture_output=True,
input="Hello\n").stdout

>>> # or, with check_output:
>>> result = subprocess.check_output([sys.executable,

"-c",
"print(input())"],
text=True,
input="Hello\n")

>>> print(result)
Hello

>>>

Note that here:

sys.executable is the
python interpreter used by
this script.

-c is an option to tell
python to execute some
following code.

Here, that code takes an
input and prints it.

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 13 / 22

http://www.scinethpc.ca

More about streams

Each process has one input stream, called stdin.

When you use input(...), you are reading from this input stream.

Each process has an output stream, called stdout.

When you use print(...), you are writing to this output stream.

In addition, each process has an error stream, called stderr.

Here’s where errors go.

When you use print(..., file=sys.stderr), you are writing to this error stream.

We have seen that we can attach a string to the stdin stream.

We have seen that we can capture the stdout from a CompletedProcess returned by run.

Similarly, we can get the stderr as a member of the result of run.

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 14 / 22

http://www.scinethpc.ca

Pipes

You can attach the output channel of one process (A) to the input channel of another process (B).

This connection is called a pipe.

Both process A and B need to be running at the same time.

Data produced by A will continuously flow into B.

Unfortately, all functions we have seen so far are blocking;

They will wait for the process to finish.

To be able to get more that one process simultaneously, we need to use the Popen object directly.

In addition, we need to make it so that data flows through the pipe instead of to the console.

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 15 / 22

http://www.scinethpc.ca

Pipes with Popen
Let P be a producer process that prints a string to its stdout.

Let C be a consumer process that prints some input from its stdin.

We want C to ingest from P, so we redirect P’s output to a PIPE:
>>> from subprocess import PIPE
>>> P = subprocess.Popen([sys.executable,"-c","print('Hello')"], text=True, stdout=PIPE)

The producer P needs to know where its stdout should go, i.e., to A.
>>> C = subprocess.Popen([sys.executable,"-c","print(input())"], text=True, stdin=P.stdout)
>>> Hello

The appearance of “Hello” shows it is working, but still goes to the console.

Also, less apparently here, the processes C and P may still be running.
To be sure that they are done, you need:
>>> returncodeC = C.wait()
>>> returncodeP = P.wait()

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 16 / 22

http://www.scinethpc.ca

Capturing the console output from Popen

So the output from C still goes to the console.

To capture it, we need to attach a PIPE to its output as well:
>>> import sys
>>> from subprocess import PIPE, Popen
>>> P = Popen([sys.executable,"-c","print('Hello')"], text=True, stdout=PIPE)
>>> C = Popen([sys.executable,"-c","print(input())"], text=True, stdin=P.stdout, stdout=PIPE)
>>>

Nothing seems to happen, because C’s stdout is not attached to anything.

We can attach it back to python with its communicate method:
>>> result = C.communicate()
>>> print(result)
('Hello\n', None)

Note that communicate returns both the stdout and stderr.
(To actually get the latter, should add stderr=PIPE)

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 17 / 22

http://www.scinethpc.ca

One more thing: shell=True?

Many examples that you may find have the option “shell=True” to .run().

Instead of running the process directly, this calls the shell as an intermediate process, and runs a
command in that shell.

This can be useful if e.g., you need wildcards (’*’, etc), or other constructs that only work in a shell.

Unless you have a reason to use this, though, don’t.

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 18 / 22

http://www.scinethpc.ca

Back to BLAST+

How now can we get this to work:
>>> from Bio.Blast.Applications import NcbiblastnCommandline
>>> blastn_cmdline = NcbiblastnCommandline(query="dna.fasta", db="nt", evalue=0.001,

outfmt=5, out="dna.xml")
>>> stdout, stderr = blastn_cmdline()

We have to build the command line ourselves, so we need to know the options and syntax of blastn.

We can get the syntax with the “blastn -h” command, which we can enter on the shell prompt, or. . .

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 19 / 22

http://www.scinethpc.ca

Get syntax
>>> print(subprocess.check_output(["blastn","-h"],text=True))
USAGE

blastn [-h] [-help] [-import_search_strategy filename]
[-export_search_strategy filename] [-task task_name] [-db database_name]
[-dbsize num_letters] [-gilist filename] [-seqidlist filename]
[-negative_gilist filename] [-negative_seqidlist filename]
[-taxids taxids] [-negative_taxids taxids] [-taxidlist filename]
[-negative_taxidlist filename] [-no_taxid_expansion]
[-entrez_query entrez_query] [-db_soft_mask filtering_algorithm]
[-db_hard_mask filtering_algorithm] [-subject subject_input_file]
[-subject_loc range] [-query input_file] [-out output_file]
[-evalue evalue] [-word_size int_value] [-gapopen open_penalty]
[-gapextend extend_penalty] [-perc_identity float_value]
[-qcov_hsp_perc float_value] [-max_hsps int_value]
[-xdrop_ungap float_value] [-xdrop_gap float_value]
[-xdrop_gap_final float_value] [-searchsp int_value] [-penalty penalty]
[-reward reward] [-no_greedy] [-min_raw_gapped_score int_value]
[-template_type type] [-template_length int_value] [-dust DUST_options]
[-filtering_db filtering_database]
[-window_masker_taxid window_masker_taxid]
[-window_masker_db window_masker_db] [-soft_masking soft_masking]
[-ungapped] [-culling_limit int_value] [-best_hit_overhang float_value]
[-best_hit_score_edge float_value] [-subject_besthit]
[-window_size int_value] [-off_diagonal_range int_value]
[-use_index boolean] [-index_name string] [-lcase_masking]
[-query_loc range] [-strand strand] [-parse_deflines] [-outfmt format]
[-show_gis] [-num_descriptions int_value] [-num_alignments int_value]
[-line_length line_length] [-html] [-sorthits sort_hits]
[-sorthsps sort_hsps] [-max_target_seqs num_sequences]
[-num_threads int_value] [-mt_mode int_value] [-remote] [-version]

DESCRIPTION
Nucleotide-Nucleotide BLAST 2.15.0+

Use '-help' to print detailed descriptions of command line arguments

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 20 / 22

http://www.scinethpc.ca

Back to BLAST+: Queries
How now can we get this to work:
>>> from Bio.Blast.Applications import NcbiblastnCommandline
>>> blastn_cmdline = NcbiblastnCommandline(query="dna.fasta", db="nt", evalue=0.001,

outfmt=5, out="dna.xml")
>>> stdout, stderr = blastn_cmdline()

We have to build the command line ourselves, so we need to know the options and syntax of blastn.

From “blastn -h” command, we see that there are command line options for everything we want.
There’s a “-query” option, a “-db” option, and “-evalue” option. and “-outfmt” option, and a
“-out” option.

So:
>>> our_cmdline = ["blastn", "-db", "nt", "-evalue", "0.001", "-outfmt", "5",

"-out","dna.xml", "-query", "dna.fasta"]
>>> result = subprocess.check_output(our_cmdline, text=True)
>>> # or: result = subprocess.run(our_cmdline, text=True).stdout

The real result is in dna.xml, to be read like we saw in the last lecture, using xml.etree.ElementTree.
Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 21 / 22

http://www.scinethpc.ca

Back to BLAST+: Creating a database

When working with our own database, we had to first index it.

Before, with BioPython, you could do this:
>>> from Bio.Blast.Applications import NcbimakeblastdbCommandline
>>> makeblastdb_cmdline = NcbimakeblastdbCommandline(input_file="my.fasta",out="chicken", dbtype="nucl")
>>> stdout, stderr = makeblastdb_cmdline()

Looking at the help in makeblastdb -h, we see that we need to do:
makeblastdb -in nt -out nt -dbtype nucl

>>> our_cmdline = ["makeblastdb", "-in","my.fasta", "-out", "chicken", "-dbtype","nucl"]
>>> result = subprocess.check_output(our_cmdline)
>>> print(result)

Ramses van Zon BCH2203 Python - 9. Subprocess 13 March 2024 22 / 22

http://www.scinethpc.ca

	Subprocess

