Discrete Fourier Transforms

Ramses van Zon

PHY1610, Winter 2024

Fourier Transform

In this lecture, we will discuss:

- The Fourier transform,
- The discrete Fourier transform
- The fast Fourier transform
- Examples using the FFTW library

Fourier Transform recap

- Let f be a function of some spatial variable \boldsymbol{x}.

- Transform to a function \hat{f} of the angular wavenumber k :

$$
\hat{f}(k) \propto \int f(x) e^{ \pm i k \cdot x} d x
$$

- Inverse transformation:

$$
f(x) \propto \int \hat{f}(k) e^{\mp i k \cdot x} d k
$$

$$
f(x)=e^{-|x|}
$$

$$
f(x)=\left(1+k^{2}\right)^{-1}
$$

Fourier Transform

- Fourier made the claim that any function can be expressed as a harmonic series.
- The FT is a mathematical expression of that.
- Constitutes a linear basis transformation in function space.
- Transforms from spatial to wavenumber, or time to frequency, etc.
- Constants and signs are just convention.*
* some restritions apply.

Discrete Fourier Transform

C. F. Gauss

- Given a set of n function values on a regular grid:

$$
x_{j}=j \Delta x ; \quad f_{j}=f(j \Delta x)
$$

- Transform to n other values

$$
\hat{f}_{q}=\sum_{j=0}^{n-1} f_{j} e^{ \pm 2 \pi i j q / n}
$$

- Easily back-transformed:

$$
f_{j}=\frac{1}{n} \sum_{q=0}^{n-1} \hat{f}_{q} e^{\mp 2 \pi i j q / n}
$$

- Solution is periodic: $\hat{f}_{-q}=\hat{f}_{n-q}$. You run the risk of aliasing, as \boldsymbol{q} is equivalent to $q+\ell n$. Cannot resolve frequencies higher than $q=n / 2$ (Nyquist).

Slow Fourier Transform

$$
\hat{f}_{q}=\sum_{j=0}^{n-1} f_{j} e^{ \pm 2 \pi i j q / n}
$$

- Discrete fourier transform is a linear transformation.
- In particular, it's a matrix-vector multiplication.
- Naively, costs $\mathcal{O}\left(n^{2}\right)$. Slow!

Slow DFT

```
#include <complex>
#include <rarray>
#include <cmath>
using complex = std::complex<double>;
void fft_slow(rvector<complex>& f, rvector<complex>& fhat, bool inverse)
{
        const int n = fhat.size();
        const int sign = inverse*(-1) + (1-inverse)*(+1);
        const double v = sign*2*M_PI/n;
        for (int q = 0; q < n; q++)
        {
            fhat[q] = 0.0;
            for (int m = 0; m < n; m++) {
            fhat[q] += complex(cos(v*q*m), sin(v*q*m)) * f[m];
            }
        }
}
```

Note that the inverse leaves out the $1 / \mathrm{n}$ normalization; this is common in many implementations
Even Gauss realized $\mathcal{O}\left(\boldsymbol{n}^{2}\right)$ was too slow and came up with

Fast Fourier Transform

- Derived in partial form several times before and even after Gauss, because he'd just written it in his diary in 1805 (published later).
- Rediscovered (in general form) by Cooley and Tukey in 1965.

Basic idea

- Write each n-point FT as a sum of two $\frac{n}{2}$ point FTs.
- Do this recursively ${ }^{2} \log n$ times.
- Each level requires $\sim n$ computations: $\mathcal{O}(n \log n)$ instead of $\mathcal{O}\left(n^{2}\right)$.
- Could as easily divide into $3,5,7, \ldots$ parts.

Fast Fourier Transform: How is it done?

- Define $\omega_{n}=e^{2 \pi i / n}$.
- Note that $\omega_{n}^{2}=\omega_{n / \mathbf{2}}$.
- DFT takes form of matrix-vector multiplication:

$$
\hat{f}_{q}=\sum_{j=0}^{n-1} \omega_{n}^{q j} f_{j}
$$

- With a bit of rewriting (assuming n is even):

$$
\hat{f}_{q}=\underbrace{\sum_{j=0}^{n / 2-1} \omega_{n / 2}^{q j} f_{2 j}}_{\text {FT of even samples }}+\omega_{n}^{q} \underbrace{\sum_{j=0}^{n / 2-1} \omega_{n / 2}^{q j} f_{2 j+1}}_{\text {FT of odd samples }}
$$

- Repeat, until the lowest level (for $n=1, \hat{f}=f$).
- Note that a fair amount of shuffling is involved.

Inverse DFT

- Inverse DFT is similar to forward DFT, up to a normalization: almost just as fast.

$$
f_{j}=\frac{1}{n} \sum_{q=0}^{n-1} \hat{f}_{q} e^{\mp 2 \pi i j q / n}
$$

- FFT allows quick back-and-forth between space and wavenumber domain, or time and frequency domain.
- Allows parts of the computation and/or analysis to be done in the most convenient or efficient domain.

Fast Fourier Transform: Already done!

We've said it before and we'll say it again: Do not write your own: use existing libraries! Why?

- Because getting all the pieces right is tricky;
- Getting it to compute fast requires intimate knowledge of how processors work and access memory;
- Because there are libraries available.

Examples:

- FFTW3 (Faster Fourier Transform in the West, version 3)
- cuFFT
- Intel MKL
- IBM ESSL
- Because you have better things to do.

Example of using a library: FFTW

Version of previous (slow) FT that calls FFTW

```
#include <complex>
#include <rarray>
#include <fftw3.h>
using complex = std::complex<double>;
void fft_fast(rvector<complex>& f, rvector<complex>& fhat, bool inverse)
{
    const int n = f.size();
    const int sign = inverse*FFTW_BACKWARD+(1-inverse)*FFTW_FORWARD;
    fftw_plan p = fftw_plan_dft_1d(n,
                reinterpret_cast<fftw_complex*>(f.data()),
                reinterpret_cast<fftw_complex*>(fhat.data()),
                sign,
                FFTW_ESTIMATE);
    fftw_execute(p);
    fftw_destroy_plan(p);
}
```


Notes

- Creates a plan first. This is a mandatory step for fftw.
- An fftw_plan contains all information necessary to compute the transform, including the pointers to the input and output arrays.
- FFTW uses its own complex number type, completely compatible with C++'s complex numbers, except $\mathrm{C}++$ does not know that. So, casts.
- Plans can be reused in the program, and even saved on disk!
- When creating a plan, you can have FFTW measure the fastest way of computing dft's of that size (FFTW_MEASURE), instead of guessing (FFTW_ESTIMATE).
- FFTW works with doubles by default, but you can install single precision too.

Consider an example

- Create a 1d input signal: a discretized $\operatorname{sinc}(x)=\sin (x) / x$ with 16384 points on the interval [-30:30].
- Perform forward transform
- Write to standard out
- Compile, and linking to fftw3 library.
- Continous FT of $\operatorname{sinc}(x)$ is the rectangle function:

$$
\operatorname{rect}(f)= \begin{cases}0.5 & \text { if }\|k\| \leq 1 \\ 0 & \text { if }\|k\|>1\end{cases}
$$

up to a normalization.

- Does it match?

Code for the working example

```
//sincfftw.cpp
#include <iostream>
#include <complex>
#include <rarray>
#include <fftw3.h>
using complex = std::complex<double>;
int main() {
    const int n = 16384;
    rvector<complex> f(n), fhat(n);
    for (int i=0; i<n; i++) {
        double x = 60*(i/double(n)-0.5); // x-range from -30 to 30
        if (x!=0.0) f[i] = sin(x)/x; else f[i] = 1.0;
    }
    fftw_plan p = fftw_plan_dft_1d(n,
                                    reinterpret_cast<fftw_complex*>(f.data()),
                                    reinterpret_cast<fftw_complex*>(fhat.data()),
                                    FFTW_FORWARD, FFTW_ESTIMATE);
    fftw_execute(p);
    fftw_destroy_plan(p);
    for (int i=0; i<n; i++)
        std::cout << f[i].real() << " " << fhat[i].real() << std::endl;
}
```


Compile, link, run, plot

```
$ module load gcc/13 rarray fftw/3 python/3
$ g++ -std=c++17 -c -03 sincfftw.cpp -o sincfftw.o
$ g++ sincfftw.o -o sincfftw -lfftw3
$ ./sincfftw > output.dat
$ ipython --pylab
```


Plots of the output, rewrapped

Pick the first and the last 30 points.

```
>>> x1=range(30)
>>> x2=range(len(data)-30,len(data))
>>> y1=data[x1,1]
>>> y2=data[x2,1]
>>> figure()
>>> plot(hstack((y2,y1)))
```


Undo phase factor due to shifting

>>> plot(hstack((y2,y1))*array([1,-1]*30)

We retrieved our rectangle function!

Precise Relation FT and DFT

- Consider a function on $f(x)$ an interval $\left[x_{1}, x_{2}\right]$.
- The fourier analysis will express this in terms of periodic functions, so think of f as periodic.
- We will approximate this function with n discrete points on $x_{1}+j \Delta x$, where $\Delta x=\left(x_{2}-x_{1}\right) / n$, and $j=0 . . n-1$, i.e.

$$
f(x)=\sum_{j=0}^{n-1} f_{j} \delta\left(x-\left(x_{1}+j \Delta x\right)\right) \Delta x
$$

- Consider its continuous FT:

$$
\hat{f}(k)=\int_{x_{1}}^{x_{2}} e^{i k x} f(x) d x
$$

- $e^{i k x}$ must have period $\left(x_{2}-x_{1}\right): k=q \times 2 \pi /\left(x_{2}-x_{1}\right)$ with q integer.

Precise Relation FT and DFT

Input

$$
\begin{gathered}
f(x)=\sum_{j=0}^{n-1} f_{j} \delta\left(x-\left(x_{1}+j \Delta x\right)\right) \Delta x \\
\Delta x=\frac{x_{2}-x_{1}}{n} \\
\hat{f}(k)=\int_{x_{1}}^{x_{2}} e^{i k x} f(x) d x \\
k=\frac{2 \pi}{x_{2}-x_{1}} q=\frac{2 \pi}{n \Delta x} q
\end{gathered}
$$

Result

$$
\hat{f}(k)=e^{i k x_{1}} \Delta x \hat{f}_{q}
$$

$$
\begin{gathered}
\hat{f}(k)=\int_{x_{1}}^{x_{2}} \sum_{j=0}^{n-1} e^{i k x} f_{j} \delta\left(x-\left(x_{1}+j \Delta x\right)\right) \Delta x d x \\
=\sum_{j=0}^{n-1} f_{j} e^{i k\left(x_{1}+j \Delta x\right)} \Delta x \\
=e^{i k x_{1}} \Delta x \sum_{j=0}^{n-1} f_{j} e^{i k j \Delta x} \\
=e^{i k x_{1}} \Delta x \sum_{j=0}^{n-1} f_{j} e^{2 \pi i q j / n}
\end{gathered}
$$

Multidimensional transforms

In principle a straighforward generalization:

- Given a set of $n \times m$ function values on a regular grid:

$$
f_{a b}=f(a \Delta x, b \Delta y)
$$

- Transform these to n other values $\hat{f}_{k l}$

$$
\hat{f}_{k l}=\sum_{a=0}^{n-1} \sum_{b=0}^{m-1} f_{a b} e^{ \pm 2 \pi i(a k+b l) / n}
$$

- Easily back-transformed:

$$
f_{a b}=\frac{1}{n m} \sum_{k=0}^{n-1} \sum_{l=0}^{m-1} \hat{f}_{k l} e^{\mp 2 \pi i(a k+b l) / n}
$$

- Negative frequencies: $f_{-k,-l}=f_{n-k, m-l}$.

Multidimensional FFT

- We could successive apply the FFT to each dimension
- This may require transposes, can be expensive.
- Alternatively, could apply FFT on rectangular patches.
- Mostly should let the libraries deal with this.
- FFT scaling still $n \log n$.

Symmetries for real data

- All arrays were complex so far.
- If input f is real, this can be exploited.

$$
f_{j}^{*}=f_{j} \leftrightarrow \hat{f}_{k}=\hat{f}_{n-k}^{*}
$$

- Each complex number holds two real numbers, but for the input f we only need n real numbers.
- If n is even, the transform \hat{f} has real \hat{f}_{0} and $\hat{f}_{n / \mathbf{2}}$, and the values of $\hat{f}_{k}>n / \mathbf{2}$ can be derived from the complex valued $\hat{f}_{0<\boldsymbol{k}<n / \mathbf{2}}$: again \boldsymbol{n} real numbers need to be stored.

Symmetries for real data

- A different way of storing the result is in "half-complex storage' . First, the $n / 2$ real parts of $\hat{f}_{0<k<n / \mathbf{2}}$ are stored, then their imaginary parts in reversed order.
- Seems odd, but means that the magnitude of the wave-numbers is like that for a complex-to-complex transform.
- These kind of implementation dependent storage patterns can be tricky, especially in higher dimensions.

Applications?

Application of the Fourier transform

- Signal processing, certainly.
- Many equations become simpler in the fourier basis.
- Reason: $\exp (i k \cdot x)$ are eigenfunctions of the $\partial / \partial x$ operator.
- Partial diferential equation become algebraic ones, or ODEs.
- Thus avoids matrix operations.
- Optimizing long range particle-particle interactions in N-body simulations and molecular dynamics.

Application: Solving diffusion equation with FFT

$$
\frac{\partial \rho}{\partial t}=\kappa \frac{\partial^{2} \rho}{\partial x^{2}}
$$

for $\rho(x, t)$ on $x \in[0, L]$, with boundary conditions $\rho(0, t)=\rho(L, t)=0$, and $\rho(x, 0)=f(x)$. Write

$$
\rho(x, t)=\sum_{k=-\infty}^{\infty} \hat{\rho}_{k}(t) e^{2 \pi i k x / L}
$$

then the PDE becomes an ODE:

$$
\frac{d \hat{\rho}_{k}}{d t}=-\kappa \frac{4 \pi^{2} k^{2}}{L^{2}} \hat{\rho}_{k} ; \quad \text { with } \hat{\rho}_{k}(0)=\hat{f}_{k} .
$$

Alternatively, one can first discretize the PDE, then take an FFT. This is numerically different.

Application: Long-range particle interactions

- Long-range interactions are those that cannot be cut off without seriously altering the physics.
- Examples of a long range interactions include:
- Gravity
- Electrostatics
- In N-body and MD simulations, the force computation is often the bottleneck.
- Without a cut-off (as for short-range) interactions, we are left with a sum over interacting pairs, i.e., an or "Particle-Particle", $\mathcal{O}\left(N^{2}\right)$ method.

Enter P3M

Particle-Particle/Particle Mesh is (one) technique around this.
It uses the FFT.

Particle-Mesh

- Choose a fixed-size rectangular mesh
- Distribute masses (blue large circles) to mesh vertices (little black circles)
- Determine gravitational potential using FFT:

$$
\nabla^{2} \Phi=4 \pi G \rho \Rightarrow \hat{\Phi}=-\frac{4 \pi G \hat{\rho}}{k^{2}}
$$

- The forces on the lattice are given by the $\boldsymbol{\nabla} \boldsymbol{\Phi}$ in real space, i.e, the fourier inverse of

$$
\hat{F}=i \mathrm{k} \hat{\Phi}=-i \mathrm{k} \frac{4 \pi G \hat{\rho}}{k^{2}}
$$

- The inverse FFT gives the real force to move the particles with.
- $\mathcal{O}(N \log N)$.

P3M

- Particle-Mesh is fast, but not very accurate.
- This is because the short range part of the forces is poorly represented.
- One can do better.
- Idea of P3M is to do an exact summation of forces with bodies nearby, and perform an approximate calculation for bodies further away.
- P3M still assigns masses to a regular grid, allowing for $\mathcal{O}(N \log N)$ scaling.
- It relies on being able to translate this separation of local and further-away in fourier space.
- Many choices possible, some better than others: quite outside the scope of this lecture, best stop.

