
Measuring Performance

Ramses van Zon

PHY1610, Winter 2024

Ramses van Zon Measuring Performance PHY1610, Winter 2024 1 / 20

Measuring Performance a.k.a. Profiling

Ramses van Zon Measuring Performance PHY1610, Winter 2024 2 / 20

Profiling

is a form of runtime application analysis that
measures a performance metric, e.g. the
memory or the duration of a program or part
thereof, the usage of particular instructions, or
the frequency and duration of function calls.

Like debuggers for finding bugs, profilers are
evidence-based methods to find performance
problems.

Most commonly, profiling information serves to
aid program optimization.

We cannot improve what we don’t measure!

Ramses van Zon Measuring Performance PHY1610, Winter 2024 3 / 20

Profiling

Where in the program is time being spent?

Find and focus in the “expensive’ ’ parts.

Don’t wate time optimizing parts that don’t matter.

Find bottlenecks.

Ramses van Zon Measuring Performance PHY1610, Winter 2024 4 / 20

Two main ways of profiling

Tracing

Events happening during code execution are logged.

Need to know what events you want logged.

Depending on how it’s done, can slow down
code.

Depending on the tool, may be hard to
interpret.

Sampling

At periodic intervals, the state of the system is
logged.

Detects where program spends its time.

Statistical; needs enough samples.

May not detect time in system calls.

Ramses van Zon Measuring Performance PHY1610, Winter 2024 5 / 20

To instrument or not to instrument

Instrumentation

This refers to anything that changes the build
process.

Adding extra code to your source code to
make profiling happen.

Changing how to build the program.

Changing how to execute the program.

Instrumentation-free

No need to change the source code.

May need to change how the program is built.

May need to change how the program is run.

In both cases, data is stored during runtime, and a program is needed afterward to display the results.

Ramses van Zon Measuring Performance PHY1610, Winter 2024 6 / 20

Instrumentation

You can instrument regions of the code

Simple, but incredibly useful

Runs every time your code is run

Can trivially see if changes make things better or worse

Ramses van Zon Measuring Performance PHY1610, Winter 2024 7 / 20

Tick tock example

// sumsins.cpp
#include <cmath>
#include <iostream>
#include "ticktock.h"
int main()
{

TickTock stopwatch; // holds timing info
stopwatch.tick(); // starts timing
// compute
double b = 0.0;
for (int i=0; i<=10000000; i++)

b += sin(i);
// report
std::cout << "The sum of sin(i) for i=0..10M"

<< " is " << b << "\n";
stopwatch.tock("To compute this took");

}

$ g++ -c -std=c++17 -O2 sumsins.cpp
$ g++ -c -std=c++17 -O2 ticktock.cc
$ g++ sumsins.o ticktock.o -o sumsins
$./sumsins
The sum of sin(i) for i=0..10M is 1.95589
To compute this took 0.1318 sec

This actually just uses the std::chrono standard
C++ library under the hood, but offers a simpler
way to time portions of code.

git clone https://github.com/vanzonr/ticktock

Ramses van Zon Measuring Performance PHY1610, Winter 2024 8 / 20

https://github.com/vanzonr/ticktock

Instrumentation-free profiling with OS utilities

Let’s start by looking at some utilities provided by the Linux OS that we can use for profiling.

time
Measure duration of the whole run of an application

top, htop
Monitor CPU, memory and I/O utilization while the application is running.

ps, vmstat, free
(One-time) information on a running processes

. . .

Ramses van Zon Measuring Performance PHY1610, Winter 2024 9 / 20

Time : timing the whole program

time is a built-in command in the bash shell.

Very simple to use. It can be run from the
Linux command line on any command.

Suppose we have an application waved1d to be run
as ./wave1d longwaveparams.txt.

We can just prepend time to the command:
$ time ./wave1d longwaveparams.txt

[program output]

real 0m16.715s # Elapsed "walltime"
user 0m16.105s # Actual user time (of all cores)
sys 0m0.252s # System/OS time, e.g. I/O

In a serial program:
real = user + sys

In parallel, at most:
user = nprocs x real

Can be run on tests to identify performance regressions

Ramses van Zon Measuring Performance PHY1610, Winter 2024 10 / 20

Top: Watching a program run
Run a command in one terminal.
Run top or top -u $USER in another terminal on the same node (type ‘q’ to exit).

top - 20:26:34 up 6 days, 2:52, 8 users, load average: 0.47, 0.81, 1.06
Tasks: 380 total, 2 running, 378 sleeping, 0 stopped, 0 zombie
%Cpu(s): 6.5 us, 0.6 sy, 0.0 ni, 92.7 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 65945184 total, 52059848 free, 1759912 used, 12125424 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 57586756 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
12241 rzon 20 0 104376 8696 6228 R 97.7 0.0 0:05.96 wave1d
12244 rzon 20 0 173104 2656 1696 R 0.3 0.0 0:00.02 top
6199 rzon 20 0 186868 2760 1100 S 0.0 0.0 0:01.09 sshd
6200 rzon 20 0 127364 3364 1816 S 0.0 0.0 0:00.10 bash

Refreshes every 3 seconds.

htop is an alternative to top with a nicer default display.

ps, vmstat and free can give the same information, but just at a single time and non-interactively.

Pro-tip: type “zxcVm1t0” after starting top for a more insightful display.

Ramses van Zon Measuring Performance PHY1610, Winter 2024 11 / 20

Sampling

As the program executes, every so often (~ 100ms) a timer goes, off, and the current location of
execution is recorded

Shows where time is being spent

Benefits:

Allow us to get finer-grained (more detailed) information about where time is being spent

Very low overhead

No instrumentation, i.e., no code modification

Disadvantages:

Requires sufficiently long runtime to get enough samples.
Does not tell us why the code was there.

Ramses van Zon Measuring Performance PHY1610, Winter 2024 12 / 20

A simple sampler : gprof

gprof is a profiler that works by adding the options -pg -g to g++ (both in compilations and
linking), the code will sample itself.

Depending on the combination of versions of g++ and gprof.

Rebuild and (re)run the application.

A file called “gmon.out” is created as a side-effect now.

gmon.out needs to be analysed by the gprof command.

The gprof command takes at least two arguments: the executable and the gmon.out file name.
This will show how much of its time the program spend in each function.

It also can take an option --line argument, to show line-by-line info.

Ramses van Zon Measuring Performance PHY1610, Winter 2024 13 / 20

Gprof example

$ module load gcc/13 binutils/2.42 # binutils contains gprof
$ make
g++ -c -pg -g -std=c++17 -O2 -o wave1d.o wave1d.cpp
...
g++ -O2 -pg -g -o wave1d wave1d.o parameters.o ... ncoutput.o -lnetcdf_c++4 -lnetcdf
$./wave1d longwaveparameters.txt
Results written to 'longresults.txt'.
and also written to 'longresults.txt.nc'.

Note that the Makefile needs to be changed, to add the -pg flags.

Process the results with:
$ gprof ./wave1d gmon.out # or
...
$ gprof --line ./wave1d gmon.out
...

Ramses van Zon Measuring Performance PHY1610, Winter 2024 14 / 20

Output of gprof –line
$ gprof --line ./wave1d gmon.out | less
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls Ts/call Ts/call name
32.20 1.11 1.11 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:42 @ 403d10)
23.50 1.92 0.81 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:44 @ 403d52)
16.97 2.51 0.59 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:43 @ 403d37)
15.52 3.04 0.54 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:42 @ 403d46)
2.18 3.12 0.08 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:49 @ 403d83)
2.18 3.19 0.08 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:50 @ 403d89)
2.18 3.27 0.08 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:51 @ 403d93)
1.45 3.32 0.05 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:41 @ 403d67)
0.87 3.35 0.03 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:49 @ 403d78)
0.73 3.37 0.03 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:48 @ 403d7d)
0.58 3.39 0.02 one_time_step(Waves&, Params&, Derived&) (wavefields.cpp:47 @ 403d98)
0.58 3.41 0.02 ra::shared_shape<double, 1>::size() const (rarray:765 @ 403c32)
0.44 3.43 0.02 std::ostream::operator<<(double) (ostream:221 @ 403c12)
0.29 3.44 0.01 std::ostream::operator<<(double) (ostream:221 @ 403beb)
0.15 3.44 0.01 output_snapshot(double, Waves&, std::basic_ofstream<char, std::char_traits<char> >&) (output.cpp:30 @ 403c0e)
0.15 3.45 0.01 std::ostream::operator<<(double) (ostream:221 @ 403c06)
0.15 3.45 0.01 std::basic_ostream<char, std::char_traits<char> >& std::operator<< <std::char_traits<char> >(std::basic_ostream<char, std::char_traits<char> >&, char const) (ostream:570 @ 403bf9)
0.00 3.45 0.00 20 0.00 0.00 ra::shared_shape<double, 1>::decref() (rarray:868 @ 4031f0)

Ramses van Zon Measuring Performance PHY1610, Winter 2024 15 / 20

Memory Profiling

Most profilers use time as a metric, but what about memory?

Valgrind

Massif: Memory Heap Profiler
I valgrind --tool=massif ./mycode

I ms_print massif.out

Cachegrind: Cache Profiler
I valgrind --tool=cachegrind ./mycode

I Kcachegrind (gui frontend for cachegrind)

https://valgrind.org

Ramses van Zon Measuring Performance PHY1610, Winter 2024 16 / 20

https://valgrind.org

Linaro Forge
Linaro Forge (formerly ARM Forge) is a commercial suite of developer tools: a debugger DDT, a profiler
MAP and a performance report utility (perf-report).

Get them on the Teach cluster or on Niagara with:
module unload gcc/13 # for technical reasons gcc must be loaded after ddt
module load ddt
module load gcc/13

Performance Reports
Compile with debugging on, ie -g (but not -pg)
perf-report ./wave1d longwaveparameters.txt
Generates .txt and .html files

MAP
Compile with debugging on, ie -g (but not -pg)
map or map ./wave1d longwaveparameters.txt
Can run without a gui with the --profile parameter.

Ramses van Zon Measuring Performance PHY1610, Winter 2024 17 / 20

Linaro Performance Reports (Forge)

Ramses van Zon Measuring Performance PHY1610, Winter 2024 18 / 20

Linaro MAP (Forge)

Ramses van Zon Measuring Performance PHY1610, Winter 2024 19 / 20

Profiling Summary

Two main approches: tracing vs sampling

Put your own timers in the code in/around important sections, find out where time is being spent.
I if something changes, you’ll know in what section

gprof is easy to use and excellent at finding where most of the time in your code is spent.

Know the ‘expensive’ parts of your code and spend your programming time accordingly.

valgrind is good for all things memory; performance, cache, and usage.

Linaro Forge (with MAP, DDT, perf-report) is a great tool, if you have it available use it!

The “write less code” advice applies here too: use already optimized libraries.

Ramses van Zon Measuring Performance PHY1610, Winter 2024 20 / 20

	Measuring Performance a.k.a. Profiling

