
BCH2203 Python - 7. Biopython

Ramses van Zon

28 February 2024

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 1 / 29

Biopython

Biopython is a package of freely available Python
tools for (mostly) genomic data.

Motivation: dealing with sequences as text
requires a lot of explicit manipulation and coding,
and much of that code could be reused in other
biomolecular computations.

Well documented:
biopython.org
Biopython Tutorial and Cookbook

Latest release is Biopython 1.83 (January 10,
2024)
Requires Python version 3.8 or higher.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 2 / 29

http://www.scinethpc.ca
https://biopython.org
http://biopython.org/DIST/docs/tutorial/Tutorial.html

Tools provided by Biopython

Working with sequences:
Translation, transcription, annotation, locations, features

Reading and writing biological data files

Connecting to online biological databases

Sequence alignments

Interface with external alignment tools, like ClustalW, Muscle, EMBOSS, BLAST.

Working with crystal structures of biological macromolecules.

Population genetics

Working with phylogenetic trees

Motif analysis

Analysis of phenotypic data

Some machine learning methods (cluster analysis, supervised learning)

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 3 / 29

http://www.scinethpc.ca

Installing Biopython
On the SciNet Teach cluster:

$ ssh -Y USERNAME@teach.scinet.utoronto.ca
$ module load python/3
$ virtualenv --system-site-packages biopython183 # once
$ source biopython183/bin/activate
$ pip install biopython==1.83 # once

On your own computer with virtual environments

Assuming you have Python >= 3.8, you can do as above, but without ssh or module load commands.
$ virtualenv --system-site-packages biopython183 # once
$ source biopython183/bin/activate
$ pip install biopython==1.83 # once

On your own computer with conda environments

Conda environments can work as well:
conda create -n biopython183 biopython==1.83 # once
conda activate biopython183

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 4 / 29

http://www.scinethpc.ca

Why specific version?

You may think you always want the latest version of a software or python package.

However, versions are not always backwards compatible.

For reproducibility, always record which versions of applications, libraries, and packages you used.

For python packages, the virtualenv (or conda env) allows you to keep the environment as it.

So you could several environments with different versions of packages.

This is why we encoded the version of biopython in the name of the virtual environment.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 5 / 29

http://www.scinethpc.ca

1

Sequences in BioPython

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 6 / 29

Working with Sequences

Biopython has Seq objects, whose definition are in the submodule Bio.Seq.

They are essentially strings with some extra methods.
>>> from Bio.Seq import Seq
>>> seq = Seq('AGTACACTGTAG')
>>> type(seq)
Bio.Seq.Seq
>>> seq
Seq('AGTACACTGTAG')
>>> print(seq)
AGTACACTGTAG
>>> seq.complement()
Seq('TCATGTGACCA')
>>> seq.reverse_complement()
Seq('ACCAGTGTACT')

Note: earlier versions of Biopython (<=1.77) used the concept of an Alphabet object that was always associated
with any sequence. Newer version do not; in those cases where it matters, functions will have additional arguments
to indicate whether it is a “DNA”, “RNA” or “protein” sequence.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 7 / 29

http://www.scinethpc.ca

Sequences are like strings

Almost all string manipulations are possible with Seq.

For example:
>>> seq = Seq('AGTACACTGTAG')
>>> seq[0:4]
Seq('AGTA')
>>> seq*2
Seq('AGTACACTGTAGAGTACACTGTAG')
>>> seq.find("ACA")
3
>>> seq.split("ACA")
[Seq('AGT'), Seq('CTGGT')]

For any string manipulation that might not work for
Seq, you can always convert the Seq to a string:

>>> seq = Seq('AGTACAcTGGTAG')
>>> seq.swapcase()
AttributeError - Traceback (most recent call last)
...
AttributeError: 'Seq' object has no attribute 'swapcase'
>>> str(seq).swapcase()
'agtacaCtggtag'

Note the difference between
1 typing the name of an object in an interactive python sessions; and
2 using the print statement with that object.

#1 gives you more information about the object in a “pythonic” form, while #2 just prints its content.

When used in a script, #1 does not print or do anything.
Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 8 / 29

http://www.scinethpc.ca

Transcription and Translation

Biopython know how to transcribe DNA to RNA and translate it to protein sequences.
>>> seq = Seq('AGTACACTGTAG')
>>> rna = seq.transcribe() # assumes sequence is coding dna
>>> rna
Seq('AGUACACUGGU')

>>> prot = seq.translate() # assumes sequence is coding dna or rna
>>> prot
Seq('STL*')

This uses a one-letter alphabet for the protein sequence. If you want the 3-letter abbreviation, you can use:
>>> from Bio.SeqUtils import seq3
>>> seq3(prot)
'SerThrTrpTer'

The Seq object does not distinguish the kind sequence, so sometimes we need to be specific, e.g.
>>> from Bio.SeqUtils import molecular_weight
>>> molecular_weight(seq)
3749.4022000000004
>>> molecular_weight(prot[:-1])
...
ValueError: 'S' is not a valid unambiguous letter for DNA
>>> molecular_weight(prot[:-1], "protein")
319.3541 Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 9 / 29

http://www.scinethpc.ca

2

SeqRecord

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 10 / 29

Annotation, locations, features

The SeqRecord provides a standard way to add information to a sequence. It contains:

.seq

The sequence itself, typically a Seq object.

.id

The primary ID (a string) to identify the sequence.
In most cases something like an accession number.

.name

A “common” name/id for the sequence.

.description

A human readable description or expressive name
for the sequence.

.letter_annotations

A dict of information about the letters in the
sequence. Keys are the name of the information,
and the information is as a Python sequence with
the same length as the sequence. Used for quality
scores, secondary structure, . . .

.annotations

A dict additional information about the sequence.

.features

A list of SeqFeature objects with more structured
information about the features on a sequence.

.dbxrefs

A list of database cross-references as strings.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 11 / 29

http://www.scinethpc.ca

Creating SeqRecords

You can create SeqRecords yourself, e.g.
>>> from Bio.Seq import Seq
>>> from Bio.SeqRecord import SeqRecord
>>> seq = Seq('AGTACACTGTAG')
>>> seqrec = SeqRecord(seq)

You do not need to provide all the data at creation time, you can fill those in later:
>>> seqrec.id = 'ABCDEFG'
>>> seqrec.description = 'Nonsensical sequence'
>>> seqrec
SeqRecord(seq=Seq('AGTACACTGTAG'), id='ABCDEFG', name='<unknown name>', description='Nonsensical sequence', dbxrefs=[])
>>> print(seqrec)
ID: ABCDEFG
Name: <unknown name>
Description: Nonsensical sequence
Number of features: 0
Seq('AGTACACTGTAG')

More commonly, you’ll get the SeqRecord information from a data file that Biopython can read in for you, filling in
the information into SeqRecords using Bio.SeqIO .

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 12 / 29

http://www.scinethpc.ca

Bio.SeqIO

Bio.SeqIO aims to provide a simple uniform
interface to input and output of sequence file
formats.

It always returns SeqRecord’s.

Can deal with files containing multiple sequences.

Many file formats are supported:

abi ace clustal fasta fastq genbank ...

https://biopython.org/wiki/SeqIO

Example: Reading a FASTA file into a SeqRecord
>>> from Bio import SeqIO
>>> record = SeqIO.read("chromosome1.fa", "fasta")
>>> type(record)
<class 'Bio.SeqRecord.SeqRecord'>
>>> print(record)
ID: 1
Name: 1
Description: 1 dna:chromosome chromosome:Galgal4:1:1:195276750:1 REF
Number of features: 0
Seq('CCGACCAGTTGTAACTCAAAAACCAAAAGAAACGCAGGACAGGCCAGCGGGGCT...GGA')
>>> # Do something with the sequence:
>>> record.seq.count("ACT")
331810

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 13 / 29

http://www.scinethpc.ca
https://biopython.org/wiki/SeqIO

Reading multiple sequences with Bio.SeqIO

If a file contains multiple sequences, you can read them one by one using the Bio.SeqIO.parse function.

This function returns a SeqRecord iterator, which allows you to go over the list of sequences in the file.

Example
>>> from Bio import SeqIO
>>> parser = SeqIO.parse("egg1.mfa", "fasta")
>>> for seqrec in parser:
... print(seqrec.description, len(seqrec.seq))
...
sample 1 fragment 0 232
sample 1 fragment 1 235
sample 1 fragment 2 123
...
sample 1 fragment 46 168
>>>

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 14 / 29

http://www.scinethpc.ca

Writing Sequences with Bio.SeqIO

You can write one or a list of sequences to a file as well.

For instance, suppose we wanted only long reads from a file:
>>> from Bio import SeqIO
>>> parser = SeqIO.parse("egg1.mfa", "fasta")
>>> longseqrecs = []
>>> for seqrec in parser:
... if len(seqrec.seq) > 200:
... longseqrecs.append(seqrec)

We can write this to a new file using SeqIO.write:
>>> SeqIO.write(longseqrecs,"longegg1.mfa","fasta")

You can of course also write just one sequence, e.g.
>>> SeqIO.write(SeqRecord(Seq("ATCGTACC")),"example.fa","fasta")

Instead of filenames, you can also use Python file handles.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 15 / 29

http://www.scinethpc.ca

3

Online Genomic Data with Biopython

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 16 / 29

Online Genomic Databases with Biopython

Databases are structured collections of data and have a well-define way (an “API”) to get data out.

A lot of genomic data is available in online databases on the internet.

It would be too much data to download all of it on your own computer.

Specific bits of data can be requested from these online databases.

With Biopython, we can do this from within Python.

(note: on many supercomputers you cannot access the internet from compute jobs so you’ll still have to download
the data you need to the supercomputer before submit compute jobs.)

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 17 / 29

http://www.scinethpc.ca

Databases of “Text”

A lot of genomic data still comes as text.

So these genomic databases are databases of text (for the most part).

That’s convenient in an online setting, as the internet is text-based.

So far, we’ve covered quite a bit on how data is stored within Python, but not much outside it.

In fact, with Biopython you often do not need to know these details as long as you know the file format.

However, to interact with online databases, we need to look at what kind of data we can find in online genomic
databases and how the data will be delivered.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 18 / 29

http://www.scinethpc.ca

Text Data Formats

Humans made computers that agree on how to interpret text data as characters to be drawn on a screen in
forms that humans can read.

Despite the large amounts of encoding and decoding going on in silico and in vivo, we call text data
’human readable’.

But further meaning can be given by the way the data is layed out, or by characters or strings with special
meanings: this give rise to text formats.

Humans are very flexible decoders, so you can easily put anything in a text file, and by looking at it, figure
out much of its meaning.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 19 / 29

http://www.scinethpc.ca

Key-value pairs

In some text data formats, pieces of data are given a
name, or label, or key that gives meaning to that piece
of data. For instance, on the right is a reference in
BibTeX format:

The keys are before the colon, the value follow the
colon.

Which keys are valid can bepart of the format
specification.

When key-values are use in addition to some other
data, they are sometimes called “tags”, or “metadata”.

@article{
author: {C.R. Harris, K.J. Millman, S.J. van der Walt, et al.},
title: {Array programming with NumPy},
journal: {Nature},
volume: {585}
pages: {357–362}
year: {2020}

}

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 20 / 29

http://www.scinethpc.ca

XML

Values in key-values format rarely contain key-value
pairs themselves.

XML is a general format that more naturally allows
nested tags.

Tags are names surrounded with angular brackets.

The tags’s end is the same except the name is
prepended by a slash (“/”).

Between the start-tag and the end-tag of the tag
there can be text, which is the content of the tag.
This text can contain other tags.

tags can have attributes, which are key=value
pairs inside the start-tag.

Which tags are allowed can be part of the format,
a.k.a., the schema.

HTML is form of XML.

<html>
<head>
<title>My Site</title>
</head>
<body>
<p>
All information that would be here is
</p>

Not relevant, or
can be found on
google.

</body>
</html>

This format specifies essentially a tree of properties.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 21 / 29

http://www.scinethpc.ca

Relational databases

By this, folks mean tables of rows and columns where data in one column of a table may refere to data in a
column of a different table. They are (still) the backbone of more web services.

The columns would be properties of the different rows would be different instances or entities. They are sometimes
called fields as well.

They are rarely text-based, but from the restriction of everything being a table came some sound best practices
that are useful for other formats too.

For instance:

Don’t repeat data.

Each row should be an entity, a thing.

Each thing should have a unique identifier by which it can be referenced.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 22 / 29

http://www.scinethpc.ca

CSV, TSV, JSON, XML

CSV and TSV

A kind, of poor-man’s database, a Comma-Separated-Values or Tab-Separated-Values file contains a (single)
table with row and columns, where the value of the columns of each row are separated by a comma or a tab
character.

The first column often defines the column names, which should describe what property the values in that column
hold.

CSV and TSV

Same as CSV except using a ‘tab’ character as column separator. Makes it easier to include commans in fields.

JSON

A loosely structured, hierarchical format based on JavaScript’s Object Notation.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 23 / 29

http://www.scinethpc.ca

Genomic Data Formats
>1 dna:chromosome chromosome:Galgal4:1:1:195276750:1 REF
CCGACCAGTTGTAACTCAAAAACCAAAAGAAACGCAGGACAGGCCAGCGGGGCTGCCCCC
GCAGGAGCTGGAGAGAGTAGGGATTATTAGACCTGCACACAGCCCATACAACTCCCCCAT
...

FASTA

One line starts with ‘>’. Following the ‘>’ is the identifier, the rest is software-dependent.

The next lines that do not start with ‘>’ are part of the sequence, which can be split over several lines.

Several sequences are allowed in one file.

Other formats

Genbank

BED format

GFF3

FASTQ

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 24 / 29

http://www.scinethpc.ca

Public Online Genomic Databases

What could you expect to find in these?

Complete reference genome sequences

Protein structure

Genotypes

SNPs

Databases (tables)

Typically have a web GUI and a web API.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 25 / 29

http://www.scinethpc.ca

Genbank and Entrez

Genbank is an open access database of all publicly available nucleotide sequences and their protein translations

Maintained by NCBI.

www.ncbi.nlm.nih.gov/genbank

Entrez is its search and retrieval tool

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 26 / 29

http://www.scinethpc.ca
https://www.ncbi.nlm.nih.gov/genbank

Access Entrez from Python

Use Bio.Entrez
>>> from Bio import Entrez

Let Genbank know your email (yes, they insist)
>>> Entrez.email = "rzon@scinet.utoronto.ca"

Start a search, e.g. for E. coli DNA sequences, with at most 13 results:
>>> handle = Entrez.esearch(db="nucleotide", term="E. coli", retmax=13)

Read the result:
>>> output = handle.read()
>>> print(output)
b'<?xml version="1.0" encoding="UTF-8" ?>\n<!DOCTYPE eSearchResult PUBLIC "-//NLM//DTD esearch 2006 0628//EN"
"https://eutils.ncbi.nlm.nih.gov/eutils/dtd/20060628/esearch.dtd">\n<eSearchResult><Count>17572373</Count>
<RetMax>13</RetMax><RetStart>0</RetStart><IdList>\n<Id>1906573107</Id>\n<Id>1906520706</Id>\n<Id>1906485224
</Id>\n<Id>1906425573</Id>\n<Id>1906410586</Id>\n<Id>1906400389</Id>\n<Id>1906377346</Id>\n<Id>1906368402</Id>
\n<Id>1906361046</Id>\n<Id>1906353597</Id>\n<Id>1906347957</Id>\n<Id>1906327159</Id>\n<Id>1906325706</Id>\n
</IdList><TranslationSet><Translation> <From>E. coli</From> <To>"Escherichia coli"[Organism] OR E.
coli[All Fields]</To> </Translation></TranslationSet><TranslationStack> <TermSet> <Term>"Escherichia
coli"[Organism]</Term> <Field>Organism</Field> <Count>8450531</Count> <Explode>Y</Explode>
</TermSet> <TermSet> <Term>E. coli[All Fields]</Term> <Field>All Fields</Field> <Count>10324226
</Count> <Explode>N</Explode> </TermSet> <OP>OR</OP> <OP>GROUP</OP> </TranslationStack>
<QueryTranslation>"Escherichia coli"[Organism] OR E. coli[All Fields]</QueryTranslation></eSearchResult>\n'Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 27 / 29

http://www.scinethpc.ca

Let’s unpack this “mess”

We get a string back from Entrez, but it’s prepended with “b”.

That indicates that this is a bytes string, not a character string.

Bytes strings can be converted to character strings with .decode()
>>> output = output.decode()
>>> print(output)
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE eSearchResult PUBLIC "-//NLM//DTD esearch 20060628//EN" "https://eutils.ncbi.nlm.nih.gov/eutils/dtd/20060628/esearch.dtd">
<eSearchResult><Count>17572373</Count><RetMax>13</RetMax><RetStart>0</RetStart><IdList>
<Id>1906573107</Id>
<Id>1906520706</Id>
<Id>1906485224</Id>
<Id>1906425573</Id>
<Id>1906410586</Id>
<Id>1906400389</Id>
<Id>1906377346</Id>
<Id>1906368402</Id>
<Id>1906361046</Id>
<Id>1906353597</Id>
<Id>1906347957</Id>
<Id>1906327159</Id>
<Id>1906325706</Id>
</IdList><TranslationSet><Translation> <From>E. coli</From> <To>"Escherichia coli"[Organism] OR E. coli[All Fields]</To> </Translation></TranslationSet><TranslationStack> <TermSet> <Term>"Escherichia coli"[Organism]</Term> <Field>Organism</Field> <Count>8450531</Count> <Explode>Y</Explode> </TermSet> <TermSet> <Term>E. coli[All Fields]</Term> <Field>All Fields</Field> <Count>10324226</Count> <Explode>N</Explode> </TermSet> <OP>OR</OP> <OP>GROUP</OP> </TranslationStack><QueryTranslation>"Escherichia coli"[Organism] OR E. coli[All Fields]</QueryTranslation></eSearchResult>

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 28 / 29

http://www.scinethpc.ca

That’s XML!

Entrez returns search results as XML.

Python has a built-in module called xml to deal with that.

xml can either read xml from a file or from a string.

It has a few sub modules:

xml.etree.ElementTree, xml.dom, xml.dom.minidom, xml.dom.pulldom, xml.sax, xml.parsers.expat

We really only need the basic submodule, etree
>>> import xml.etree.ElementTree as ET
>>> searchtree = ET.ElementTree(ET.fromstring(output))
>>> print(searchtree)
<xml.etree.ElementTree.ElementTree object at 0x2ac8d2ae4d68>

This has read it as a tree for use by Python, it’s no longer plain text.

Ramses van Zon BCH2203 Python - 7. Biopython 28 February 2024 29 / 29

http://www.scinethpc.ca

	Sequences in BioPython
	SeqRecord
	Online Genomic Data with Biopython

