
Introduction to Machine Learning

Alexey Fedoseev

March 12, 2024

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 1 / 25

Machine learning: supervised and unsupervised

What is machine learning?

Machine learning algorithms build a mathematical model of sample data in order to make
predictions or decisions without being explicitly programmed to perform the task.

When we’re working with data, we generally have two types of analyses:

Supervised: the data comes labeled with the right answer:
▶ curve fitting.
▶ for prediction-type analyses (decision trees, neural networks,. . .)

Unsupervised: we’re looking for patterns in the data:
▶ what groups of items in this dataset are similar? Dissimilar?
▶ Generally used for exploration, evaluation and sometimes prediction.

There is also semi-supervised, but we won’t be dealing with that.

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 2 / 25

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 3 / 25

Types of Data

Generally speaking, data comes in two broad classes:

Continuous: real numbers
Discrete:

▶ Binary: True/False.
▶ Categorical: category A, category B, . . .
▶ Ordinal: discrete, but has an intrinsic order: S, M, L, XL, . . .

Others are possible too, but we won’t be covering them.

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 4 / 25

Regression

Regression is a central part of machine learning. In machine learning we are not so concerned
with how well the regression model fits to the data, but rather care about how well it predicts
new observations.

Data comes as a set of n observations, each of which has p features.
We will assume continuous features (not always the case).
The goal is to learn the function y = f̂(x1, x2, ..., xp) for predicting new values.

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 5 / 25

Linear Regression

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(36)

X = 2*np.random.rand(100,1)
y = 4+3*X + np.random.randn(100,1)*0.9

plt.scatter(X, y)
plt.xlabel("X")
plt.ylabel("y")

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 6 / 25

import sklearn.linear_model as slm
lin_reg = slm.LinearRegression()
lin_reg.fit(X, y)

xx = np.linspace(0,2,100).reshape(-1,1)
yy = lin_reg.predict(xx)

plt.scatter(X, y)
plt.plot(xx, yy, "r")

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 7 / 25

Polynomial Regression

What if your data is actually more complex than a simple straight line?

You can actually use a linear model to fit nonlinear data.

Add powers of each feature as new features
Train a linear model on this extended set of features.

This technique is called Polynomial Regression.

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 8 / 25

import numpy as np
import matplotlib.pyplot as plt

m = 100

X=6*np.random.rand(m,1)-3
y=0.5*X**2+X+2+np.random.randn(m,1)*0.9

plt.scatter(X, y)
plt.xlabel("X")
plt.ylabel("y")

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 9 / 25

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
poly_feat = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_feat.fit_transform(X)
print(poly_feat.get_feature_names())
print(X_poly[0], X[0])

Output

['x0', 'x0^2']
[1.65717363 2.74622444] [1.65717363]

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 10 / 25

lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)

print(lin_reg.coef_,lin_reg.intercept_)

xx=np.linspace(-3,3,100).reshape(-1,1)
yy=lin_reg.predict(

poly_feat.transform(xx))

plt.scatter(X, y)
plt.plot(xx, yy, "r")

Output
[[1.05702383 0.53440749]] [1.87683274]

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 11 / 25

Originaly we had

y = 0.5 * X**2 + X + 2 + np.random.randn(m,1) * 0.9

The model predicted

y_pred = 0.53440749 * X**2 + 1.05702383 * X + 1.87683274

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 12 / 25

Overfitting

poly_feat = PolynomialFeatures(
degree=20, include_bias=False)

X_poly = poly_feat.fit_transform(X)

lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)

xx=np.linspace(-3,3,1000).reshape(-1,1)
yy=lin_reg.predict(

poly_feat.transform(xx))

plt.scatter(X, y)
plt.plot(xx, yy, "r")

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 13 / 25

Transformation Pipelines

As we saw with the Polynomial Regression there are could be many data transformation steps
that need to be executed in the right order. Scikit-Learn provides the Pipeline class to help with
such sequences of transformations
from sklearn.pipeline import Pipeline

polynomial_regression = Pipeline([
("poly_features", PolynomialFeatures(degree=2, include_bias=False)),
("lin_reg", LinearRegression()),

])

polynomial_regression.fit(X, y)

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 14 / 25

Classification

Like regression, classification is a central topic in machine learning. It deals with the discrete
target labels. Examples of these labels are:

Yes or No
Male or Female
Salary brackets: below $40k, $40k-$60k, $60k-$80k, $80k-$100k, $100k+

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 15 / 25

Decision Tree

To understand Decision Trees, let’s build one and take a look at how it makes predictions. Let’s
use the famous iris data set.

The data consists as four measurements of 150 wild irises of 3 species

It’s a classic classification problem

It’s one of the data sets which comes with sklearn.datasets

The data comes as an sklearn bunch

We first randomly split the data set, 66.6%/33.3%, into training and test data sets

https://en.wikipedia.org/wiki/Iris_flower_data_set

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 16 / 25

https://en.wikipedia.org/wiki/Iris_flower_data_set

Decision Tree

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

iris = load_iris()
print(iris.DESCR)

...
:Number of Instances: 150

(50 in each of three classes)
:Number of Attributes: 4 numeric,

predictive attributes and the class
:Attribute Information:

- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:

- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica

...

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 17 / 25

Training versus Testing

In general, we get our data, and that’s it. We don’t have the luxury of generating more data on
a whim.

We would like to do out-of-sample testing of whatever model we generate, to see how it does
against new data. But we don’t have any new data.

The solution is to hold out some of the original data. Most of the data is used for training the
model, the rest is used for testing it.

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 18 / 25

Decision Tree

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.33, random_state=42)

Now that the data is split up, we are ready to generate the tree.
from sklearn import tree, metrics

model = tree.DecisionTreeClassifier(max_depth=2)
model.fit(X_train, y_train)

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 19 / 25

Decision Tree
It’s always good to plot your decision tree.
Install graphviz package

$ conda install python-graphviz

import graphviz
dot_data = tree.export_graphviz(

model, out_file=None,
class_names=iris.target_names,
feature_names=iris.feature_names,
impurity = False, filled = True,
label = 'none')

graph = graphviz.Source(dot_data)
graph.format = 'pdf'
graph.render("iris", view=True)

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 20 / 25

Decision Tree
You found an iris flower and you want to
classify it. Start at the root node (depth 0).

Measure the petal length of flower

If it is smaller than 2.45cm you move down
to the left node (depth 1)

The left node of the Decision Tree predicts
that your flower is Iris-Setosa.

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 21 / 25

Decision Tree
Let’s say you have another flower you want to
classify. You start at the root node (depth 0).

Measure the petal length of flower

If it is greater than 2.45cm you move down
to the right node (depth 1)

Is the petal width smaller than 1.75 cm?

If it is, then your flower is most likely an
Iris-Versicolor (depth 2, left)

If not, it is likely an Iris-Virginica (depth 2,
right).

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 22 / 25

Confusion Matrix
How to determine the effectiveness of a classifier?

A good way to evaluate the performance of a classifier is to look at the confusion matrix. The
general idea is to count the number of times instances of class A are classified as class B.
y_pred = model.predict(X_train)
print(metrics.confusion_matrix(y_train, y_pred))

array([[31, 0, 0],
[0, 34, 1],
[0, 4, 30]])

setosa (predicted) versicolor (predicted) virginica (predicted)

setosa (actual) 31 0 0
versicolor (actual) 0 34 1
virginica (actual) 0 4 30

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 23 / 25

Decision Tree

How does the decision tree do on the test data?
y_pred = model.predict(X_test)
print(metrics.confusion_matrix(y_test, y_pred))

array([[19, 0, 0],
[0, 15, 0],
[0, 1, 15]])

Only once virginica was misclassified as versicolor.

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 24 / 25

Trees and over-fitting

As with polynomials and regression, we can easily produce overly-complex decision trees which
do great on the training data, but don’t generalize.

In fact, this is guaranteed to happen with decision trees, since given enough splits, it will always
perfectly classify the data.

How do we deal with this? The usual approach is to prune the tree at some level, where the
results are ”good enough”, and the model is not ”too complex”.

Alexey Fedoseev Introduction to Machine Learning March 12, 2024 25 / 25

	Introduction
	Regression
	Classification

