
Introduction to Python
Quantitative Applications for Data Analysis

Alexey Fedoseev

February 29, 2024

Alexey Fedoseev Introduction to Python February 29, 2024 1 / 24



The PATH

When you type a command in your terminal, computer checks particular directories on your
computer for the file with the name matching your command. If it finds it simply runs it, if not -
you see error: command not found.

For example, the command ls that we use all the time is actually a file on your computer. You
can find where it is located using the command which.

$ which ls
/bin/ls

Alexey Fedoseev Introduction to Python February 29, 2024 2 / 24



The PATH
How does the computer know where to look for the file? It checks the value of the specific
variable $PATH set by the system. To check directories that are in the $PATH on your computer,
use the command echo.

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/TeX/texbin

The directories are separated with the colon “:”. The $PATH is searched from the beginning to
the end, with the first matching executable being run. So directories at the beginning of $PATH
take precedence over those that come later.

The software installer usually will prepend (i.e. add to the beginning) to the $PATH the new
directory where the new software has been installed. However, you can also do it yourself.

$ export PATH="/Users/alexey/anaconda3/bin":$PATH
$ echo $PATH
/Users/alexey/anaconda3/bin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:
/Library/TeX/texbin

Alexey Fedoseev Introduction to Python February 29, 2024 3 / 24



Installing Anaconda
Anaconda is a distribution of the Python and R programming languages for scientific computing.
It comes with hundreds of packages and different package versions are managed by the package
management system conda.

You can download Anaconda here:

https://www.anaconda.com/download

Anaconda allows us to create a named, isolated, working copy of Python that maintains its own
files, directories, and paths so that you can work with specific versions of libraries or Python
itself without affecting other Python projects.

After the installation is finished, check whether conda was properly installed by checking its
version:

$ conda -V
conda 4.11.0

Alexey Fedoseev Introduction to Python February 29, 2024 4 / 24

https://www.anaconda.com/download


Permanently adding to PATH
If the previous command gave you an error like this

-bash: conda: command not found

you need to manually prepend Anaconda to the PATH. Open the file ~/.bashrc or
~/.bash_profile (depending which one you already have) using nano and add the following
line at the end of the file (replace it with the directory where Anaconda is located on your
computer)

export PATH="/Users/alexey/anaconda3/bin:$PATH"

After saving the change restart all terminal windows.

If you do not have ~/.bashrc or ~/.bash_profile files on your computer, simply create
~/.bash_profile file with the aforementioned line.

$ cat ~/.bash_profile
export PATH="/Users/alexey/anaconda3/bin:$PATH"

Alexey Fedoseev Introduction to Python February 29, 2024 5 / 24



Notes for Windows users
Windows users do not have bin directory. Instead add the following lines into your
~/.bash_profile when using Git Bash (replace it with the actual directory on your computer)

export PATH="/c/Users/scinet/Anaconda3":$PATH
export PATH="/c/Users/scinet/Anaconda3/Scripts":$PATH

After saving the file, restart the git bash windows. Test the installation in a new window.

$ source activate base
$ which python
/c/Users/scinet/Anaconda3/python
$ which conda
/c/Users/scinet/Anaconda3/Scripts/conda
$ python -i
Python 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy

Alexey Fedoseev Introduction to Python February 29, 2024 6 / 24



python versus ipython

There are two main ways to run Python interactively: regular Python and iPython (“Interactive
Python”). They both have advantages and disadvantages:

Regular Python is what you get when you type python at the command prompt.

There aren’t as many special features built into regular Python.

But regular Python is what you get when you run Python scripts, so you’re sure to get
consistent behavior between your scripts and the Python command line.

iPython has tab-line completion built-in, interactive plotting and other features.

But iPython is not what you have when you run scripts.

Alexey Fedoseev Introduction to Python February 29, 2024 7 / 24



Virtual environments
Python applications will often use packages and modules that don’t come as part of the
standard library. Applications will sometimes need a specific version of a library, because the
application may require that a particular bug has been fixed or the application may be written
using an obsolete version of the library’s interface.

This means it may not be possible for one Python installation to meet the requirements of every
application. If application A needs version 1.0 of a particular module but application B needs
version 2.0, then the requirements are in conflict and installing either version 1.0 or 2.0 will leave
one application unable to run.

The solution for this problem is to create a virtual environment, a self-contained directory tree
that contains a Python installation for a particular version of Python, plus a number of
additional packages.

Different applications can then use different virtual environments. To resolve the earlier example
of conflicting requirements, application A can have its own virtual environment with version 1.0
installed while application B has another virtual environment with version 2.0. If application B
requires a library be upgraded to version 3.0, this will not affect application A’s environment.

Alexey Fedoseev Introduction to Python February 29, 2024 8 / 24



Starting Python

To start Python open a terminal and type python (or ipython). Use the command exit() to
quit.

$ python
Python 3.7.6 (default, Jan 8 2020, 13:42:34)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Python has a slightly different prompt than R, however, you can type the commands, computer
will execute it and display the result right away.

Alexey Fedoseev Introduction to Python February 29, 2024 9 / 24



Importing modules

Most of the default functions in Python are contained in packages. These are similar to
“libraries” in R. There are several ways to import packages:
>>> import platform
>>> platform.system()
'Darwin'
>>> import time as t
>>> t.time()
1550679097.931794
>>> from calendar import isleap
>>> isleap(2020)
True

Alexey Fedoseev Introduction to Python February 29, 2024 10 / 24



Variables in Python

Variables are reserved memory locations to store values. It means that when you create a
variable, you reserve some space in the memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can be
stored in the reserved memory.

Variable names must be made up of only letters, numbers, and underscore (_). They cannot
begin with a number and cannot contain dots or spaces!
>>> myvar = 10
>>> print(myvar)
10

Alexey Fedoseev Introduction to Python February 29, 2024 11 / 24



Python data types

Python has several standard data types:

Numbers
Strings
Booleans
Container types

▶ Lists
▶ Sets
▶ Tuples
▶ Dictionaries

We aren’t going to cover all of the data and container types, since we’re focusing on Scientific
data analysis.

Alexey Fedoseev Introduction to Python February 29, 2024 12 / 24



Integers in Python 3

In Python 3, there is effectively no limit to how long an integer value can be. It is only
constrained by the amount of memory your system has.

>>> import math
>>> math.factorial(500)
30605751221644063603537046129726862938858880417357699941677674125947653317
67168674655152914224775733499391478887017263688642639077590031542268429279
06974559841225476930271954604008012215776252176854255965356903506788725264
32189626429936520457644883038890975394348962543605322598077652127082243763
94491201286786753683057122936819436499564604981664502277165001851765464693
40112226034729724066333258583506870150169794168850353752137554910289126407
15715483028228493795263658014523523315693648223343679925459409527682060806
22328123873838808170496000000000000000000000000000000000000000000000000000
00000000000000000000000

Alexey Fedoseev Introduction to Python February 29, 2024 13 / 24



Floating-Point Numbers

Floats have a decimal point and integers do not have a decimal point. So even though 4 and 4.0
are the same number, 4 is an integer while 4.0 is a float.

Before you start calculating with floats you should understand that the precision of floats has
limits, due to Python and the architecture of a computer. Some examples of errors due to finite
precision are displayed below.
>>> 1.13 - 1.1
0.029999999999999805
>>> 1 + .0000000000000001
1.0

Alexey Fedoseev Introduction to Python February 29, 2024 14 / 24



Strings
Strings are among the most popular types in Python. We can create them simply by enclosing
characters in quotes. Python treats single quotes the same as double quotes.
>>> word = "Hello World"
>>> print(word)
Hello World
>>> print(word + " again!")
Hello World again!

Python does not support a character type; these are treated as strings of length one, thus also
considered a substring. To access substrings, use the square brackets for slicing along with the
index or indices to obtain your substring.
>>> print(word[0], word[6])
H W
>>> print(word[6:11])
World

Alexey Fedoseev Introduction to Python February 29, 2024 15 / 24



Booleans
Python supports standard boolean variables and operations.

Booleans behave as you would intuitively expect.

"and" and "&" are the same.

"or" and "|" are the same.

"not" is written out (don’t use the “!” symbol).
>>> truth = True
>>> truth and False
False
>>> not truth
False
>>> truth or False
True
>>> truth | False
True

Alexey Fedoseev Introduction to Python February 29, 2024 16 / 24



Some notes

Some notes about Python features, in contrast to R.

The assignment operator is the equal sign, as it should be.

Variables cannot have periods in their names. Periods are part of the object-oriented syntax
in Python.

As with R, comments start with a # sign.

For boolean operators:
▶ Python uses True, not TRUE. Also, you must use the full word, not just T.
▶ The not operator is written out (don’t use “!”).
▶ The only time “!” is used is for the “not equal to operator” (“!=”, the opposite of “==”).

Python is case sensitive (A is different from a).

Alexey Fedoseev Introduction to Python February 29, 2024 17 / 24



Dynamic typing

Like R, Python uses dynamic typing which means you can re-use a variable over and over again.
>>> truth = 2
>>> print(truth)
2
>>> type(truth)
<class 'int'>
>>>
>>> truth = True
>>> print(truth)
True
>>> type(truth)
<class 'bool'>

Alexey Fedoseev Introduction to Python February 29, 2024 18 / 24



Lists
The list is a most versatile datatype available in Python which can be written as a list of
comma-separated values (items) between square brackets. Important thing about a list is that
items in a list need not be of the same type.
>>> mix_list = ["apples", 2, True, [4,10], False]
>>> print(mix_list)
['apples', 2, True, [4, 10], False]

List indices start at 0, and lists can be sliced. Slicing is done with [start:finish], but does
not include the "finish" element.
>>> print(mix_list[0])
apples
>>> print(mix_list[0:1])
['apples']
>>> print(mix_list[0:2])
['apples', 2]

Alexey Fedoseev Introduction to Python February 29, 2024 19 / 24



Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side of
the assignment operator, and you can add to elements in a list with the append() method.
>>> print(mix_list)
['apples', 2, True, [4, 10], False]
>>>
>>> mix_list[0] = "oranges"
>>> print(mix_list)
['oranges', 2, True, [4, 10], False]
>>>
>>> mix_list.append("books")
>>> print(mix_list)
['oranges', 2, True, [4, 10], False, 'books']

Alexey Fedoseev Introduction to Python February 29, 2024 20 / 24



Dictionaries

A list is an ordered sequence of objects, whereas dictionaries are unordered sets. The main
difference between lists and dictionaries is that items in dictionaries are accessed via keys and
not via their position. Keys are unique within a dictionary while values may not be. The values
of a dictionary can be of any type.

To access dictionary elements, you can use the square brackets along with the key to obtain its
value.
>>> campus = {"name": "UTSC", "location": "Scarborough", "enrollment": 12980}
>>> print(campus)
{'name': 'UTSC', 'location': 'Scarborough', 'enrollment': 12980}
>>> print(campus["name"])
UTSC

Alexey Fedoseev Introduction to Python February 29, 2024 21 / 24



Updating the dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an existing
entry, or deleting an existing entry as shown in a simple example given below.
>>> campus['name'] = 'University of Toronto Scarborough'
>>> campus['established'] = 1964
>>> del campus['location']
>>> del campus['enrollment']
>>> print(campus)
{'name': 'University of Toronto Scarborough', 'established': 1964}
>>>
>>> campus.keys()
dict_keys(['name', 'established'])
>>> campus.values()
dict_values(['University of Toronto Scarborough', 1964])

Alexey Fedoseev Introduction to Python February 29, 2024 22 / 24



Writing scripts
Create the file todo.py with the following contents.
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("day",

choices=["today", "tomorrow"],
help="Select the day to see tasks")

args = parser.parse_args()

toDo = {"today": "sleep"}
toDo["tomorrow"] = "do nothing"

print(args.day.capitalize(), "I am going to", toDo[args.day])

$ python todo.py today
Today I am going to sleep

Alexey Fedoseev Introduction to Python February 29, 2024 23 / 24



Running the script
$ python todo.py tomorrow
Tomorrow I am going to do nothing

$ python todo.py
usage: todo.py [-h] {today,tomorrow}
todo.py: error: the following arguments are required: day

$ python todo.py -h
usage: todo.py [-h] {today,tomorrow}

positional arguments:
{today,tomorrow} Select the day to see tasks

optional arguments:
-h, --help show this help message and exit

Alexey Fedoseev Introduction to Python February 29, 2024 24 / 24


	Introduction to Python

