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Today’s slides

Today’s slides can be found here. Go to the ”Quantitative Applications for Data Analysis”
page, under Lectures, ”Linear models”.

https://scinet.courses/1346
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Today’s class

Today we will begin our adventures in actual data analysis.

Initial data exploration.

Linear models.

Verification of models.

Generalized linear models.

As always, ask questions.
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Look at your data

There very first step to dealing with your
data is to plot it. Always always always!

The ’pairs’ function will do the same as
demonstrated here.

>

> str(trees)

’data.frame’: 31 obs. of 3 variables:

$Girth : num 8.3 8.6 8.8 10.5 10.7 ...

$Height: num 70 65 63 72 81 ...

$Volume: num 10.3 10.3 10.2 16.4 18.8 ...

>

> plot(trees)

>

Girth

65 70 75 80 85
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Look at your data, continued

Once you’ve had a first look, you might
want to take a closer look at a particular
pair of variables.

>

> plot(trees$Girth, trees$Volume)
>

Looks like they might be related.
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Correlation and covariance
If we suspect that two variables might be related to one another, it’s worth our time to look at
the correlation and covariance of the variables.

Covariance:
σXY = E [(X − E (X)) (Y − E (Y ))]

Correlation (Pearson’s correlation):

ρXY =
E [(X − E (X)) (Y − E (Y ))]

σXσY

Recall that the standard deviation:

σX =

√
E
[
(x− E (x))2

]
Where E is the expectation value of the quantity in question.
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Correlation and covariance, continued

The ”cor” function will produce the
correlation from the previous slide.

The ”var” function returns the variance or
the covariance, depending on the number
of arguments.

Recall that the standard deviation is the
square root of the variance.

>

> cor(trees$Girth, trees$Volume)
[1] 0.9671194

>

> var(trees$Girth, trees$Volume)
[1] 49.88812

>

> var(trees$Girth)
[1] 9.847914

>

> sd(trees$Girth)
[1] 3.138139

>
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Model fitting

One important application of statistics is the fitting of models to empirical data. There are
many ways to do this, but they are all based on the same principles:

collect some data.

propose a relationship between the ’features’, and the ’target’ in your data (if there is a
’target’).

I ’features’ are the independent variables in your data (x),
I the ’target’ is the dependent variable (y). Not all data sets have dependent variables.

Fit your model to the data,

Test and evaluate the quality of the model.

Depending on the field, is this called: modelling, fitting, regression.
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Linear models

Let’s consider the simplest possible case, that the relationship between the independent and
dependent variables is linear.

y ' β0 + β1x1 + ...+ βnxn + δ

As usual:

y is the dependent variable,

x1, ..., xn are the independent variables,

β0 is the intercept,

β1, ..., βn are the coefficients, and

δ is noise.

For example, we might assume a relationship for plant growth:

growth ' water + temp + fertilizer...

The plant growth is linearly related to the temperature, amount of fertilizer and water, etc.
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Fitting a linear model

We use the ”lm” function to fit a linear
model to our data.

The weird thing with the ˜ (”tilde”) is
called a ”formula”.

Formulae are used, in R, to describe the
functional relationship between variables
when building models.

>

> model <- lm(trees$Volume ~ trees$Girth)
>

> model

Call:

lm(formula = trees$Volume ~ trees$Girth)

Coefficients:
(Intercept) trees$Girth

-36.943 5.066

>

Volume ' -36.943 + (5.066 x Girth).
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Fitting a linear model, continued

The lm function returns an object
of class ’lm’.

This is essentially just a very-deep
named list.

If we so desire, we can now use
the model to calculate the
model’s prediction for a new tree,
with a girth of, say, 15.12.

Use the ’predict’ function.

Use the coefficients directly.

>

> model <- lm(Volume ~ Girth, data = trees)

>

> predict(model, newdata = data.frame(Girth = 15.12))

1

39.65229

>

> coef(model)
(Intercept) trees$Girth
-36.943459 5.065856

>

> coef(model)[1] + coef(model)[2] * 15.12

(Intercept)

39.65229

>
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Using formulae, an aside

Formulae show up all over the place in R.
There are two ways of building a formula:

Use vectors of data as the arguments
to the formula.

Specify the names of the columns of a
data frame, and then pass the data
frame as an argument to the function.

The entry to the left of the tilde is the
dependent variable.

All the entries to the right of the tilde
are the independent variables (there
can be more than one).

>

> model <- lm(trees$Volume ~ trees$Girth)
>

> model <- lm(Volume ~ Girth, data = trees)

>

> model2 <- lm(Volume ~ Girth + Height,

+ data = trees)

>

The second option, specifying column
names, is unfortunate due to its syntax
being inconsistent with the rest of R, but it
is the one more commonly used.
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Using formulae, an aside, continued

There are a few other ways to
specify a formula.

A formula can be assigned
to a variable, and used later.

To specify ”all columns
which have not yet been
mentioned” us the ”.”.

To remove an
already-specified feature, use
the minus sign.

You can also mix data frame
columns and non-column
vectors.

> f <- Volume ~ .

> class(f)

[1] "formula"

>

> trees.model <- lm(f, data = trees)

>

> library(boot)

> model <- lm(ulcer ~ . - sex - year, data = melanoma)

>

> model

Call:

lm(formula = ulcer ~ . - sex - year, data = melanoma)

Coefficients:

(Intercept) time status age thickness

6.146e-01 -5.595e-05 -1.417e-01 4.210e-04 6.045e-02

>
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Calculating confidence intervals, an aside
Suppose that you’ve calculated the mean, x̄, of some
quantity. What is the uncertainty on that quantity?

To answer this question, we estimate the Standard Error

SE (x)2 =
s2

n

where s2 =
∑

(xi − x̄)2 / (n− 1). The 95%
confidence interval, in which there is a 95% chance the
true mean of the population lies, is given by

µ± 1.96 SE(x)

This is because 1.96 standard deviations is approximately
what contains 95% of the normal distribution.

>

> x <- trees$Girth
>

> my.mean <- mean(x)

>

> se2 <- var(x) / length(x)

>

> my.mean - 1.96 * sqrt(se2)

[1] 12.14368

>

> my.mean + 1.96 * sqrt(se2)

[1] 14.35309

>
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Calculating confidence intervals, an aside, continued

We can also use the Standard Errors to perform hypothesis tests on the coefficients of our
linear model.

The Null Hypothesis is that the coefficients in our linear model have a value of zero,
meaning that the dependent variable does not depend on the independent variable.

To test this we need to determine whether our estimate of the coefficient is sufficiently far
from zero to reject the Null Hypothesis. How far is far enough?

We can check in the usual way, by calculating a t-statistic

ti =
βi − 0

SE(βi)

This estimates the number of standard deviations that βi is away from zero.

The question then becomes: what is the probability of getting a t statistic of value |t|, or
larger? This is your p value.

Erik Spence (SciNet HPC Consortium) Linear Models 27 February 2024 15 / 45



Calculating confidence intervals, an aside, more
Given our t statistic (for a Null Hypothesis
of zero):

ti =
βi − 0

SE(βi)

we need only determine the probability of
getting |t| or greater. To determine this we
use a ’t’ distribution, which is very close to
the Gaussian CDF for n > 30. The second
argument is the number of degrees of
freedom. The factor of 2 is because it
could be left or right tailed.

The p value is small. The probability of
committing a Type I error is quite low.

>

> coefs <- coef(summary(trees.model))

>

> est <- coefs["Height", "Estimate"]

> std.err <- coefs["Height", "Std. Error"]

>

> my.t <- (est - 0) / std.err

>

> my.t

[1] 2.606594

>

> 2 * (1 - pt(my.t, length(x) - 3))

[1] 0.01449097

>
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Fitting a linear model, continued more
Important details about
the model can be found in
the summary:

The ”t value” is the
estimate divided by
the standard error.

The p-value is the
probability of
achieving a value of t,
or larger, under the
null hypothesis
(estimate = 0).

> model <- lm(Volume ~ Girth + Height, data = trees)

> summary(model)

Call:

lm(formula = Volume Girth + Height, data = trees)

Residuals:
Min 1Q Median 3Q Max

-6.4065 -2.6493 -0.2876 2.2003 8.4847
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***

Girth 4.7082 0.2643 17.816 < 2e-16 ***

Height 0.3393 0.1302 2.607 0.0145 *
---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948, Adjusted R-squared: 0.9442

F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
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Fitting a linear model, continued even more
What about that
F-statistic at the bottom?

The fit also gives an
analysis of the null
hypothesis that β1 =
β2 = ... = βn = 0.

This means that
there’s no
dependence on the
independent variables
at all.

This null hypothesis
can be rejected in
this case.

> model <- lm(Volume ~ Girth + Height, data = trees)

> summary(model)

Call:

lm(formula = Volume Girth + Height, data = trees)

Residuals:
Min 1Q Median 3Q Max

-6.4065 -2.6493 -0.2876 2.2003 8.4847
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***

Girth 4.7082 0.2643 17.816 < 2e-16 ***

Height 0.3393 0.1302 2.607 0.0145 *
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948, Adjusted R-squared: 0.9442

F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
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Fitting a linear model, continued some more

There are some assumptions built into ”lm”. You need to know the fine print:

The noise in the data, δ, is normally distributed about the true value.

Homoscedasticity: the variance in the noise is constant throughout the data.

If these conditions are not met your model is not on a good statistical foundation.
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Fitting a linear model, continued even more
It’s always good to visualize your
model once it’s been made.

>

> model <- lm(Volume ~ Girth,

+ data = trees)

>

> plot(trees$Girth, trees$Volume)
> abline(model)

>

Not bad, but could be better.
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Fitting a quadratic model
We can increase the order of the polynomial
which we are fitting to the data.

> Girth2 <- trees$Girth**2
>

> model2 <- lm(Volume ~ Girth + Girth2,

+ data = trees)

>

> plot(trees$Girth, trees$Volume)
> abline(model)

>

> xx <- seq(min(trees$Girth), max(trees$Girth),
+ len = 100)

> yy <- predict(model2, data.frame(Girth = xx,

+ Girth2 =

xx**2))

>

> lines(xx, yy, lwd = 2, col = "red")
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The ”abline” command only works
with linear fits.
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Fitting a higher-order model

There are several ways to have a higher-order
fit. The best one is to use ’poly’.

>

> model10 <- lm(Volume ~ poly(Girth, 10),

+ data = trees)

>

> plot(trees$Girth, trees$Volume)
> abline(model)

>

> p.model10 <- predict(model10,

+ data.frame(Girth = xx))

>

> lines(xx, p.model10, lwd = 2, col = "red")

>
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What’s up with ’poly’?

We’ve seen that one way to do a non-linear fit is to use the commands

> xsq <- x * x

> model3 <- lm(y ~ x + xsq)

or it can be written as

> model3 <- lm(y ~ x + I(x**2) + I(x**3))

Unfortunately, when used this way, x, x2 and x3 will be correlated with each other. This can
lead to resolution problems, especially at higher orders.

The ’poly’ function fixes this by generating at set of orthogonal polynomials evaluated at ’x’.
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That’s great, but we’re not done yet

It’s always a good idea to do some further analysis of your model before declaring success.
There are a few things in particular that should always be done.

plot the residuals of the model, in various ways,

examine the statistics of the residuals,

examine the statistics of the model.

What are residuals? Residuals are the distance between the actual value, and the value
predicted by the model, for each data point:

Ri = f(xi)− yi
where f is the model, evaluated at data point xi, and yi is the actual value of the dependent
variable.
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Step 1: plot the residuals

Always plot your residuals. Always.

> par(mfrow = c(1, 3))

>

> plot(model$residuals)

> plot(trees$Volume, model$residuals)

> plot(trees$Girth, model$residuals)
>

Plot your residuals against everything:

index,

against the dependent variables,

against the independent variables.

You should see a snowstorm. There
should be no clumps.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

−
5

0
5

10
Index

m
od

el
$r

es
id

ua
ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 30 50 70

−
5

0
5

10

trees$Volume

m
od

el
$r

es

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8 10 12 14 16 18 20

−
5

0
5

10

trees$Girth

m
od

el
$r

es

Erik Spence (SciNet HPC Consortium) Linear Models 27 February 2024 25 / 45



Step 2: plot the residuals via histogram

Always plot a histogram of your residuals.
Things to look for:

The mean should be zero. If your
residuals are not centered on zero your
model is missing something.

The distribution should be symmetric.
If it’s not, it’s biased (there ’structure’
in the data which has not been
captured by the model).

Distribution should be a Gaussian (an
assumption made as part of the fit).

> par(mfrow = c(1, 1))

> hist(model$residuals, breaks = 11)

Histogram of model$residuals
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Step 3: plot the residuals via Q-Q plot

Plot your residuals on a Q-Q plot.

A Q-Q plot graphically demonstrates
how normally-distributed the residuals
are.

Ideally the residuals should be
normally distributed.

>

> qqnorm(model$residuals)

> qqline(model$residuals)
>
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Using R2

R2 = (explained variation)
/ (total variation).

Explains how much of
the variance in the data
can be explained by the
model.

All other variation is
caused by shortcomings
in the model, or noise.

A high R2 value is
necessary, but not
sufficient, for the model
to be satisfactory.

> summary(model)

Call:

lm(formula = Volume Girth + Height, data = trees)

Residuals:
Min 1Q Median 3Q Max

-6.4065 -2.6493 -0.2876 2.2003 8.4847
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***

Girth 4.7082 0.2643 17.816 < 2e-16 ***

Height 0.3393 0.1302 2.607 0.0145 *
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

1

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948, Adjusted R-squared: 0.9442

F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
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Adjusted R2

Because more-complex
models will always have a
higher R2, since it does not
punish models for
complexity, it’s better to use
Adjusted R2 as a measure
of how well the model is
doing.

Adjusted R2 punishes the
model’s R2 score for the
number of free parameters
that are used.

> summary(model)

Call:

lm(formula = Volume ~ Girth, data = trees)

Residuals:
Min 1Q Median 3Q Max

-8.065 -3.107 0.152 3.495 9.587
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***

Girth 5.0659 0.2474 20.48 < 2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.252 on 29 degrees of freedom

Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331

F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

>
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Simpson’s paradox

Simpson’s paradox (also called the
Yule-Simpson effect) is a phenomenon in
statistics in which a trend appears in
several different groups of data, but
disappears or reverses when these groups
are combined.

> library(datasauRus)

>

> sp <- simpsons paradox

> my.data <- sp[sp$dataset == ’simpson 2’,]

>

> plot(my.data$x, my.data$y)
> m1 <- lm(y ~ x, data = my.data)

> abline(m1)
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Simpson’s paradox, continued

Plotting the residuals in this case will
demonstrate plenty of structure, indicating
that there’s something wrong with the
model, or that, as in this case, the model is
incomplete.

>

> plot(my.data$x, m1$residuals)
>
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Confounding variables

Confounding variables are independent variables that influence
both the dependent variable and at least one other
independent variable.

Failing to include, or deal with, these variables can result
in an exaggeration or masking of the relationship
between the independent and dependent variables.

Omitting confounding variables forces the model to
attribute their affects to other variables, resulting in a
”confounding” of the actual relationship between
variables.

This results in ”omitted variable bias”.

y

x1

x2

On the right, two independent variables, x1 and x2, are correlated with both the dependent
variable, y, and each other.
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Preventing confounding-variable problems

If you have the opportunity, you can deal with potential problems with confounding variables
at the design stage of your study. These are several ways to approach this:

Matching: create two groups, where each member of one group has an identical
counterpart, with respect to confounding variables, in the other group.

Restriction: creating similar groups of subjects that are all the same with respect to the
confounding variable, and thus the confounding variable has no effect on the dependent
variable.

Stratification: estimate the relationship between your dependent and independent
variables within groups with different values of confounding variables, then average the
estimates.

Randomization: subjects are randomly, with respect to confounding variables, assigned to
different groups. As such the average values of confounding variables should be the same
in each group.
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Confounding variables, continued
Failing to include your confounding variables in your model may cause problems.

The missing confounding variable can cause a bias in the estimated coefficients in your
model, especially if the two variables are negatively correlated, as the model attempts to
compensate for the missing variable.

The amount of bias depends on the strength of the correlation. The stronger the
correlation the stronger the bias.

Conversely, independent variables that have no correlation to any other independent
variables will not be biased at all. Thus the coefficient for this feature will not change as
different features are added/removed from the model.

If you include different combinations of independent variables in your model, and the
coefficients change significantly, you are observing ”omitted variable bias”.

One of the assumptions of our linear model is that the noise is uncorrelated with the data.
Any correlations in the data will appear as some sort of structure in your residuals.
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Multicollinearity in your data
Suppose you’ve included all confounding variables in your model in the hopes that the model
can deal with them. This introduces what is called ”multicollinearity” into your model.

This can be an issue in itself.

Why? Well, the independent variables should be independent. If they’re correlated to
each other they’re obviously not independent.

If they’re not independent, it becomes harder for the model to estimate the coefficient
associated with the independent variables, but they don’t vary independently of each
other.

As a result,
I coefficients become unstable depending on which variables are included in the model.
I the precision of the coefficients is reduced

If the two variables are positively correlated you may be able to remove one of them from the
model. If they’re negatively correlated you probably cannot.
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Multicollinearity in your data, continued
So how much is multicollinearity a problem?

If the correlations between variables isn’t too strong, you can probably safely ignore it.

If it is strong you should probably remove a variable, or possibly centring and scaling the data
may help.

Not surprisingly, there’s a measure we can use to determine the multicollinearity of the
independent variables in our model: ”variance inflation factor” (VIF).

VIF gives the strength of the correlation between independent variables.

It starts at 1, and has no upper limit.
I A value near 1 indicates weak correlation.
I A value from 1 - 5 indicates moderate correlation, but is probably harmless.
I A value greater than 5 indicates strong multicollinearity.

As you might expect, code to calculate VIF in R already exists.
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Measuring multicollinearity
The ’car’ library contains the ’vif’ function,
which calculates the multicollinearity of the
independent variables in the model.

The ’ape’ library contains many
phylogenetic data sets, including data
concerning species in the order ’carnivora’.

This model is looking at the relationship
between weaning age (WA), gestation
length (GL), litter size (LS), female weight
(FW), female brain weight (FB) and birth
weight (BW).

Examining the coefficients indicates that
FB can be dropped from the model.

>

> library(ape)

> library(car)

> data(carnivora)

>

> model <- lm(WA ~ GL + LS + FW + FB + BW,

+ data = carnivora)

> vif(model)

GL LS FW FB BW

2.267679 1.295047 8.339708 10.930205 3.182454

> >

> model2 <- lm(WA ~ GL + LS + FW + BW,

+ data = carnivora)

> vif(model2)

GL LS FW BW

1.752621 1.158614 2.197752 2.940201

>
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Generalized linear models
The linear model built by ”lm” has some built-in assumptions:

Normally distributed noise.

Uncorrelated noise.

Constant variance of the noise.

Data is not correlated to the noise.

Independent variables are independent.

There are situations where these assumptions are dramatically violated. To deal with this, let
us examine ”Generalized Linear Models”. These allow

Non-normally distributed noise.

Non-constant variance.

If you find that you have structure in your residuals, it’s possible that you need to use a
generalized linear model.
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Generalized linear models, continued

When should you use a generalized linear model?

You know that your data should come from a non-linear, non-polynomial distribution
(exponential, Poisson, etc).

You don’t know what your distribution should be, and you’ve got structure in your
residuals.

How do generalized linear models work? Let’s start with a regular linear model. Assuming the
vectors of data are (X,Y ), the problem is to find the vector of coefficients β such that

E(Y ) = Xβ

assuming that Y ∼ N(Xβ, σ2),

where E is the expectation value, N(µ, σ2) is the symbol for a normal distribution centred
on µ with a standard deviation of σ.
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Generalized linear models, continued
As an example, for a log-linked Gaussian GLM, we have

log (E(Y )) = Xβ,

which means that E(Y ) = eXβ,

Y ∼ N(eXβ, σ2).

where E is the expectation value, N(µ, σ2) is the symbol for a normal distribution centred
on µ with a standard deviation of σ.

Generalized linear models consist of 3 parts:

A ”link” function. A function which transforms the data such that it becomes linear.

A linear predictor (Xβ).

A probability distribution, which describes the type of noise to be expected in the
dependent variable.
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Generalized linear models, continued more

There are many possible link functions available. The most common ones are

Identity: E(Y ) = Xβ,

Log: log (E(Y )) = Xβ → E(Y ) = eXβ.

Logit: log
(

E(Y )
1−E(Y )

)
= Xβ → E(Y ) = 1

1+e−Xβ

Inverse: 1/E(Y ) = Xβ → E(Y ) = 1/ (Xβ)

The identity link function results in a standard linear regression. By performing a generalized
linear model using this link function, with Gaussian noise, you will get the same result as using
the ”lm” function.
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Generalized linear models, continued even more

Once a link function has been chosen, the type of error in the data must be chosen. The
different error families have different default link functions.

Error family Default link Link inverse Use for:

gaussian identity 1 Normally distributed error
poisson log exp Counts
binomial logit 1/(1 + e−x) Proportions or binary data
Gamma inverse 1/x Continuous data with non-constant error

> glm(formula, family = binomial(link = log))
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GLM example

Consider the Cars93 data set.
Plotting the MPG in the city, versus
Weight, suggests a non-linear relationship.

>

> library(MASS)

>

> plot(Cars93$Weight, Cars93$MPG.city)
>
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GLM example, continued

Let’s perform a GLM, using Gaussian noise
and the log link function.

> sorted.weights <- sort(Cars93$Weight)
>

> glm1 <- glm(MPG.city ~ Weight,

+ data = Cars93,

+ family = gaussian(link = "log"))

>

> plot(Cars93$Weight, Cars93$MPG.city)
> lines(sorted.weights,

+ predict(glm1,

+ data.frame(Weight = sorted.weights),

+ type = "response"))

>
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Summary

We’ve started looking at data, and fitting it. Things to remember:

Plot your data!

Start with lm, both for linear and other polynomial fits.

Plot the residuals! There is important information in there!

If the data are not polynomial, or the residuals are not normally distributed, you may need
to use a Generalized Linear Model.

You will likely need to play around with the different noise families and link functions to
find one that best works with your data.

Other types of regression include logistic regression, for fitting categories, and
multinomial regression, for multiple dependent variables.
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