
Ordinary Differential Equations

Ramses van Zon

PHY1610 Winter 2024

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 1 / 24

Ordinary Differential Equations
Are equations with derivatives with respect to 1 variable, e.g.

dx
dt = f (x , t)

There can be more than one such equation, e.g.

dx (1)

dt = f (1)(x (1), x (2), t); dx (2)

dt = f (2)(x (1), x (2), t)

The derivative can be of higher order to, e.g. d2x
dt2 = f (x , t)

But this can be written, by setting x (1) = x , x (2) = dx/dt, to

dx (1)

dt = x (2); dx (2)

dt = f (x (1), t)

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 2 / 24

ODE Examples
Lotka–Volterra (predator/pray)

dx (1)

dt = x (1)(α− βx (2))

dx (2)

dt = −x (2)(γ − δx (1))

Harmonic oscillator

dx (1)

dt = x (2)

dx (2)

dt = −x (1)

Rate equations (chemistry))

dx (1)

dt = −2k1[x (1)]2x (2) + 2k2[x (3)]2

dx (2)

dt = −k1[x (1)]2x (2) + k2[x (3)]2

dx (3)

dt = 2k1[x (1)]2x (2) − 2k2[x (3)]2

Lorenz system (weather)

dx (1)

dt = σ(x (2) − x (1))

dx (2)

dt = x (1)(ρ− x (3))− x (2)

dx (3)

dt = x (1)x (2) − βx (3)

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 3 / 24

Numerical approaches

Start from the general form:
dx (i)

dt = f (x (1), x (2), ..., t)

Algorithms for numerically solving ODEs are called integrators.

All integrators will evaluate f at discrete points t0, t1,

Initial conditions: specify x (i)(t0).

The time step is typically denoted with h.

Consecutive points may have a fixed step size h = tk+1 − tk or may be adaptive.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 4 / 24

Desirable qualities for an integrator

Accuracy

Efficiency

Stability

Respect physical laws, e.g.

Time reversal symmetry
Conservation of energy
Conservation of linear momentum
Conservation of angular momentum
Conservation of phase space volume

The most efficient algorithm is then the one that
allows the largest possible time step for a given
level of accuracy, while maintaining stability and
preserving conservation laws.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 5 / 24

ODE solvers: Forward Euler

To solve:
dx
dt = f (t, x)

we could take the simple approximation:

xn+1 ≈ xn + hf (xn, tn) "forward Euler"

Why?
x(tn + h) = x(tn) + hdxdt (tn) +O(h2)

So:
x(tn + h) = x(tn) + hf (xn, tn) +O(h2)

So when taking small time steps, this should be accurate.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 6 / 24

Accuracy of the forward Euler method

x(tn + h) = x(tn) + hf (xn, tn) +O(h2)

O(h2) is the local error, i.e., the error in each time step.

For given trajectory from t = t1 to t2, we need n = (t2 − t1)/h steps.

The global error, i.e., the error accumulated over the trajectory, is therefore:
n ×O(h2) = O(h)

Not very accurate.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 7 / 24

Stability of the forward Euler method
To solve harmonic oscillator:

dx (1)

dt = x (2)

dx (2)

dt = −x (1)

with forward Euler gives:(
x (1)

n+1
x (2)

n+1

)
=
(

1 h
−h 1

)(
x (1)

n

x (2)
n

)

Stability governed by eigenvalues.

λ± = 1± ih of that matrix.
|λ±| =

√
1 + h2 > 1

Unstable for any h!

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 8 / 24

Monitoring Stability
For the harmonic oscillator, we know the exact answer, so it’s easy to see that the forward Euler
integrator is unstable.

For systems without an exact solution, one may still know that some quantities should be bounded.

Many physical systems have conserved energy, so we can monitor the energy as a function of time.

Harmonic oscillator:

H = 1
2 [x (1)]2 + 1

2 [x (1)]2

So smaller h does help, but in the long run
(t ∼ O(1/h)), unstable.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 9 / 24

ODE solvers: implicit mid-point Euler
Equation to solve:

dx
dt = f (x , t)

Symmetric simple approximation:

xn+1 ≈ xn + hf ((xn + xn+1)/2, tn) ”mid-point Euler”

This is an implicit formula, i.e., has to be solved for xn+1.

Example: Harmonic oscillator[
1 − h

2
h
2 1

] [
x [1]

n+1
x [2]

n+1

]
=
[

1 h
2

− h
2 1

][
x [1]

n

x [2]
n

]
⇒

[
x [1]

n+1
x [2]

n+1

]
= M

[
x [1]

n

x [2]
n

]

Eigenvalues M are λ± = (1±ih/2)2

1+h2/4 so |λ±| = 1

Stable for all h!
Implicit methods often more stable and allow larger step size h.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 10 / 24

ODE solvers: implicit mid-point Euler
Equation to solve:

dx
dt = f (x , t)

Symmetric simple approximation:

xn+1 ≈ xn + hf ((xn + xn+1)/2, tn) ”mid-point Euler”

This is an implicit formula, i.e., has to be solved for xn+1.

Example: Harmonic oscillator

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 11 / 24

ODE solvers: Predictor-Corrector
Computation of new point

Correction using that new point

Gear P.C.: keep previous values of x to do higher order Taylor series (predictor), then use f in last
point to correct.

Can suffer from catastrophic cancellation at very low h.

Runge-Kutta: Refines by using mid-points. 4th order version:

k1 = hf (t, x)
k2 = hf (t + h/2, x + k1/2)
k3 = hf (t + h/2, x + k2/2)
k4 = hf (t + h, x + k3)

x ′ = y + k1
6 + k2

3 + k3
3 + k4

6

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 12 / 24

Adaptive Step-size Control

Rather than taking a fixed h, we can vary h such that the solution has a certain accuracy.

Methods that adjust the time step as the computation proceeds are known as adaptive methods.

Such an approach needs four components:
1 The basic algorithm for a single h time step,
2 An algorithm to determine the best h time step based on given absolute or relative precision,
3 A evolution algorithm combining these two to take the best possible single time step.
4 A driver routine to step forward in time, using the evolution, for the desired time points.

Don’t code this yourself (except for the ‘driver’)!

Adaptive schemes are implemented in libraries such as the gsl and boost::numeric::odeint.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 13 / 24

ODE example: Van der Pol equation
The Van der Pol oscilator satisfies the following
equation:

d2y
dt2 − µ(1− y2)dydt + y = 0

or, writing y0 = y =, y1 = dy/dt,

dy0
dt = y1

dy1
dt = −y0 − µ(y2

0 − 1)y1

Solution for t = 0..100 starting from
(y0, y1) = (1, 0)

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 14 / 24

GSL ODE example: Van der Pol equation
#include <iostream>
#include <iomanip>
#include <memory>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_odeiv2.h>

const unsigned vdpdim = 2;

int vdprhs(double t, const double y[],
double f[], void *params)

{
double mu = *reinterpret_cast<double*>(params);
f[0] = y[1];
f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1);
return GSL_SUCCESS;

}

int main() {
const gsl_odeiv2_step_type*

step_type = gsl_odeiv2_step_rk8pd;
double abstol = 1.e-8;
auto stepper = std::shared_ptr<gsl_odeiv2_step>

(gsl_odeiv2_step_alloc(step_type, vdpdim),
gsl_odeiv2_step_free);

auto control = std::shared_ptr<gsl_odeiv2_control>
(gsl_odeiv2_control_y_new (abstol, 0.0),
gsl_odeiv2_control_free);

auto evolver = std::shared_ptr<gsl_odeiv2_evolve>
(gsl_odeiv2_evolve_alloc(vdpdim),
gsl_odeiv2_evolve_free);

double mu = 10;
gsl_odeiv2_system sys = {vdprhs, 0, vdpdim, &mu};

double t = 0.0;
double maxt = 100.0;
double h = 1.e-6;
double y[vdpdim] = { 1.0, 0.0 };

while (t < maxt) {
int status = gsl_odeiv2_evolve_apply
(evolver.get(), control.get(), stepper.get(),
&sys, &t, maxt, &h, y);

if (status != GSL_SUCCESS) break;
std::cout<<std::scientific<<std::setprecision(5)

<<t<<" "<<y[0]<<" "<<y[1]<<"\n";
}

}Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 15 / 24

Special case: Molecular Dynamics

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 16 / 24

Molecular Dynamics Simulations

Used in chemical physics, materials science and the
modelling of bio-molecules.

N interacting particles

mi r̈i = Fi (r1, r2, ,̇t)}

+ initial conditions

What makes this different from other ODEs?

Hamiltonian dynamics

Very expensive evaluation of F if N is large

Large simulation times needed
N-body simulation fall within this class as well; the numerics does not care whether
the particles are atoms or stars.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 17 / 24

Hamiltonian dynamics
Molecular Dynamics aims to compute equilibrium, thermodynamic and transport properties of
classical many body systems.

Often, the energy is of the form H = |p|2
2m + Φ(r) (a.k.a. the Hamiltonian), and is conserved under

the dynamics.

In that case, the systems follows Newton’s equations of motion:

ṙ = 1
mp ṗ = F = −∂Φ

∂r ,

Potential energy Φ is typically a sum of pair potentials:

Φ(r) =
∑
(i,j)

ϕ(rij) =
N∑

i=1

i−1∑
j=1

ϕ(rij),

which entails the following expression for the forces F :

Fi =
∑
j 6=i

ϕ′(rij)
rj − ri
rij

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 18 / 24

Boundary conditions
Cannot simulate infinite systems.

Add a wall; the box with thick red boundaries
is our simulation box.

But wall gives finite size effects.

More benign: Periodic Boundary Conditions

Wall becomes a simulation box.

A particle exiting simulation box is put back at
the other end.

Other boxes are periodic images.
We can compute their position when their
effect is needed, instead of storing.

Sometimes call “checker board boundary
conditions”.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 19 / 24

Force calculations: cut-off
A common pair potential between neutral, spherical particles (atoms) is the Lennard-Jones potential

ϕ(r) = 4ε
[(σ

r

)12
−
(σ
r

)6
]
,

σ is a measure of the range of the potential.

ε is its strength.

The potential is positive for small r : repulsion.

The potential is negative for large r : attraction.

The potential goes to zero for large r : short-range.
The potential has a minimum of −ε at 21/6σ.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 20 / 24

Force calculations

Avoid infinite sums: modify the potential such
that it becomes zero beyond a certain cut-off
distance rc :

ϕ′(r) =
{
ϕ(r)− ϕ(rc) if r < rc
0 if r ≥ rc

where the subtraction of ϕ(rc) prevents
discontinuities.

Computing all forces in an N-body system
requires the computation of N(N − 1)/2 forces
Fij

Force computation often the most demanding
part of MD.

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 21 / 24

Streamlining the force evaluation
Cell divisions

Divide the simulation box into cells larger than the cutoff rc .

Make a list of all particles in each cell.

In the sum over pairs in the force computation, only sum pairs of particles in the same cell or in
adjacent cells.

Neighbour lists

Make a list of pairs of particles that are closer than rc + δr .

Sum over the list of pairs to compute the forces.

The neighbour lists are to be used in subsequent force calculations as long as the list is still valid.

Invalidation criterion: a particle has moved more than δr/2.

For systems with short-range interactions: O(N2) → O(N).

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 22 / 24

Symplectic integrators
MD applications typically contain their own specialized integrator(s).

Reaching long times is paramount, so the stability of the integrator is the most important criteria.

So-called symplectic integrators turn out to be particularly stable.

These consists of substeps, each generated by its own Hamiltonian.

Verlet Scheme (first version)

rn+1 = rn + pn
m h + Fn

2mh2

pn+1 = pn + Fn+1 + Fn
2 h

The momentum rule appears to make this an
implicit rule since Fn+1 is required, but not if F
only depends on r !

Verlet Scheme (second version)

The extra storage step can be avoided by
introducing the half step momenta as intermediates:

pn+1/2 = pn + 1
2Fnh

rn+1 = rn +
pn+1/2

m h

pn+1 = pn+1/2 + 1
2Fn+1h

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 23 / 24

Where are the MD libraries?
MD packages are usually applications with a lot of parameters, that used other libraries. Examples:

Gromacs
NAMD
LAMMPS

which all differ in intended usages, available force fields, serial speed (platform dependent), parallel
scalability, etc.

OpenMM

Some MD packages come more as frameworks, which could be used as a library, within e.g. a C++
program.

OpenMM out of Stanford is a prime example which is actively maintained.

You can even setup the simulations from python with it.

https://simtk.org/home/openmm

Ramses van Zon Ordinary Differential Equations PHY1610 Winter 2024 24 / 24

