
BCH2203 Python - 4. More data analysis

Ramses van Zon

31 January 2024

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 1 / 26

1

Working with Strings and Lists

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 2 / 26

Strings and lists are very similar

A string can be viewed as a list of characters.

While that is not entirely technically correct, they behave very similarly.

For example

Get an element from a list:
>>> mylist = [1,2,"ab"]
>>> print(mylist[1])
2

and from a string:
>>> mystring = "12ab"
>>> print(mylist[1])
2

Go over every element of a list:
>>> for element in mylist:
... print(element)
...
1
2
ab

of a string:
>>> for element in mystring:
... print(element)
...
1
2
a
b

A major difference is that string elements cannot be assigned to, and always contains characters.

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 3 / 26

http://www.scinethpc.ca

Slicing

Given a string or list x, you can get a substring or
sublist by using an index range instead of a single
number between square brackets. This is called
slicing.
>>> x = "abcdef world!"
>>> print(x[2:4])
cd
>>> print("Hello, " + x[7:13])
Hello, world!
>>> z = [1,2,3,4]
>>> print(z[1:3])
[2, 3]

If no number before colon, starts from the
beginning.
>>> print("Goodbye, " + x[:5])
Goodbye, abcde

If you omit the number after the colon, the slice
goes to the end:
>>> print("Good morning, " + x[7:])
Good morning, world!

Negative indices indicate positions from the end
of the string/list.
>>> print(x[:-1] + "?")
abcdef, world?

Get every nth element by adding :n to the slice.
>>> print(x[::2])
ace ol!

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 4 / 26

http://www.scinethpc.ca

Finding in Python Lists

lst.index(val) returns the index of first
occurance of val in the list. E.g.
>>> lst = [4, 3, 2, 4, 1, 6, 3, 4]
>>> lst.index(4)
0

lst.index(val, start) returns the index of
first occurance of val in the list starting from
index start. E.g.
>>> lst.index(4,1)
3

lst.count(val) give the number of occurances.

To match things based on more than equality,
you’ll need if statements, possibly within list
comprehensions. E.g, to get all even numbers:
>>> [x for x in lst if x%2 == 0]
[4, 2, 4, 6, 4]

To get all the indices, you’d need more code, e.g.
>>> def indices(lst, val):
... indices = []
... lastindex = -1
... Nindices = lst.count(val)
... while len(indices) < Nindices:
... nextindex = lst.index(val, lastindex+1)
... indices.append(nextindex)
... lastindex = nextindex
... return indices
...
>>> indices(lst,4)
[0,3,7]

or use list comprehension. . .
>>> def indices(lst, val):
... return [i for i,x in enumerate(lst) if x==val]
...
>>> indices(lst,4)
[0,3,7]

We can also use list comprehension for other
cases, e.g. to find the indices of even numbers.

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 5 / 26

http://www.scinethpc.ca

Finding in Strings

All previous techniques for finding things in lists work also for searching substring in strings.

But there are some additional techniques available as well.

s.find(substring) is similar to index, but returns -1 of a substring is not found (instead of giving an
error). E.g.
>>> s = "Hello, world!"
>>> s.find("world!")
7
>>> s.find("World!")
-1

s.startswith(substring) checks if a string starts with substring.
>>> s.startswith('Hell')
True

To find more complicated patterns, you can use regular expressions from the (built-in) re module.

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 6 / 26

http://www.scinethpc.ca

Replacing

For lists, replacing a single element can be done using indexing:
>>> lst = [1,2,3]
>>> lst[1] = 42
>>> print(lst)
[1, 42, 3]

This does not work for strings, they are immutable. Instead, you’ll need to create a new string.
>>> s = "abc"
>>> s2 = s[:1] + "B" + s[2:]
>>> print(s, s2)
abc aBc

Python strings have a method to find and replace substrings:
>>> seq = "AUGAUCUCGUAA"
>>> print(seq.replace("UAA","*"))
AUGAUCUCG*
>>> print(seq.replace("UAA","*").replace("AUG","Met").replace("UCG","Ser").replace("AUC","Ile"))
MetIleSer*

There are more ‘find-and-replace’ type methods. Check docs.python.org/3/library/stdtypes.html#string-methods

To replace more complex patterns, again, regular expressions from the re module could be used.
Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 7 / 26

http://www.scinethpc.ca
https://docs.python.org/3/library/stdtypes.html#string-methods

From strings to lists and back again

Sometimes, one may have a large string that one wants to divide up. E.g. we may want to split up a sentence
into words.

We can use the string split method for that:
>>> s = 'Hello, beautiful world!'
>>> words = s.split()
>>> print(words)
['Hello,', 'beautiful', 'world!']

Note that the result is a list of strings.

We can use a different separator character instead of a space:
>>> notwords = s.split('o')
>>> print(notwords)
['Hell',', beautiful w', 'rld!']

Given a list of strings, we can concatenate them with join.

join is a method of the separator to insert, e.g.
>>> expressive = 'oooo'.join(notwords)
>>> print(expressive)
Helloooo, beautiful woooorld!

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 8 / 26

http://www.scinethpc.ca

2

Working with Arrays

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 9 / 26

Numerical arrays

For numerical work, the python-native lists aren’t the ideal data type.

Lists can do funny things that you don’t expect, if
you’re not careful.

Lists are just a collection of items, of any type.

If you do mathematical operations on a list, you
won’t get what you expect.

These are not the ideal data type for scientific
computing.

Arrays are a much better choice, but are not a
native Python data type.

>>> a = [1, 2, 3, 4]
>>> a
[1, 2, 3, 4]
>>>
>>> b = [3, 5, 5, 6]
>>> b
[3, 5, 5, 6]
>>>
>>> 2 * a
[1, 2, 3, 4, 1, 2, 3, 4]
>>>
>>> a + b
[1, 2, 3, 4, 3, 5, 5, 6]
>>>

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 10 / 26

http://www.scinethpc.ca

Lists vs. Arrays

Lists: optimized for flexibility

Can hold any type

Can grow

Are one-dimensional

Do not have out-of-the-box element-wise
operations

Arrays: optimized for speed

Single type

Fixed size

Multi-dimensional

Have optimized element-wise operations

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 11 / 26

http://www.scinethpc.ca

Arrays are what we want to use: NumPy

Almost everything numerical that you want to do starts with . . .

https://numpy.org

NumPy has been around for a while, but a review
article about it just appeared in Nature:

Harris, C.R., Millman, K.J., van der Walt, S.J. et
al. Array programming with NumPy. Nature 585,
357–362 (2020).
https://www.nature.com/articles/s41586-020-2649-2

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 12 / 26

http://www.scinethpc.ca
https://numpy.org
https://www.nature.com/articles/s41586-020-2649-2

NumPy Basics

Before using it we need to import it in Python:
>>> import numpy as np

We can then create an array of any shape and
type, e.g.
>>> a = np.ndarray([3,4], dtype=int)

The content of this 3x4 integer array is undefined.

NumPy has functions to create arrays of various
types and forms: zeros, ones, linspace, etc.

linspace creates an array of 50 equally spaced
values between two limits. The number of values
can be changed using an optional third arguments.

Examples:
>>> import numpy as np
>>> np.zeros(5)
array([0., 0., 0., 0., 0.])
>>> np.ones(5, dtype = int)
array([1, 1, 1, 1, 1])
>>> np.zeros([2,2])
array([[0., 0.],

[0., 0.]])
>>> np.arange(5)
array([0, 1, 2, 3, 4])
>>>
>>> np.linspace(1,5)
array([1., 1.08163265,

1.16326531, 1.24489796,

4.67346939, 4.75510204,
4.83673469, 4.91836735, 5.])

>>> np.linspace(1, 5, 6)
array([1., 1.8, 2.6, 3.4, 4.2, 5.])

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 13 / 26

http://www.scinethpc.ca

Specifying data types

>>> x = np.float32(7.4e-3)
>>> a = np.array([[1,2,3],[4,5,6]],dtype=np.float32)
>>> a
array([[1., 2., 3.],

[4., 5., 6.]], dtype=float32)
>>>
>>> b = np.ndarray((2,3),dtype=np.float16)
>>> b
array([[-1.51875000e+01, 5.11169434e-02, nan],

[0.00000000e+00, -3.12500000e+01, 4.35709953e-05]], dtype=float16)

Integers:
int8 int16 int32 int64 uint8 uint16 uint32 uint64
Number indicates number of bits.

Floats of half, single and double precision:
float16 float32 float64

Complex numbers in single and double precision:
complex64 complex128

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 14 / 26

http://www.scinethpc.ca

Accessing array elements

Elements of arrays are accessed using square brackets.

Like most languages, the first index is the row,
the second is the column.

Indexing starts at 0.

You cannot assign values outside the index range
(unlike e.g. in R).

>>> np.zeros([2, 3])
array([[0., 0., 0.],

[0., 0., 0.]])
>>> a = np.zeros([2,3])
>>>
>>> a[1,2] = 1
>>> a[0,1] = 2
>>> a
array([[0., 2., 0.],

[0., 0., 1.]])
>>>
>>> a[2,1] = 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: index 2 is out of bounds for axis

0 with size 2
>>>

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 15 / 26

http://www.scinethpc.ca

Slicing arrays

You can select a subset of an NumPy array using slicing, just as with a list.

An index range looks like “a:b”, e.g. “2:4”. So a[2:4] selects those elements of an array a.

Read “2:4” as “from the beginning of the element at index 2, to the beginning of that at index 4”.

Or read it as: index 2 is the first you get, index 4 is the first you do not get.

Negative indexing is supported.

If a third index is specified, it refers to the step size (“1:10:2”, for example).

If no index is specifed, either “beginning” or “end” is assumed.

>>> a = np.array([1,2,3,4,5,6,7])
>>> print(a[2])
3
>>> print(a[2:4])
[3,4]
>>> print(a[::2])
[1,3,5,7]

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 16 / 26

http://www.scinethpc.ca

Slicing arrays, continued

Elements in an array can also be selected using a boolean array. Boolean arrays can be created using a conditional
expression.
>>>
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a > 2
array([False, False, False, True, True], dtype=bool)
>>> a[a > 2]
array([3, 4])
>>> a[(a % 2) == 0]
array([0, 2, 4])
>>>

The “%” symbol is the modulus operator.

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 17 / 26

http://www.scinethpc.ca

3

Array arithmetic

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 18 / 26

Looping over arrays

In Python, loops over arrays are performed over
the first index.

To go over all elements of a multidimensional
array a without using nested loops, use
a.ravel() or a.flat

(or a.flatten() if you need a copy).

>>> a = np.array([1,2,3])
>>> for e in a:
... print("element:", e)
element: 1
element: 2
element: 3
>>>
>>> a = np.array([[1,2],[3,4]])
>>> for e in a:
... print("element:", e)
element: [1 2]
element: [3 4]
>>>
>>> for e in a.ravel():
... print("element:", e)
element: 1
element: 2
element: 3
element: 4
>>>

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 19 / 26

http://www.scinethpc.ca

Shape and reshape

NumPy allows you to modify the shape of an
array once it already exists.

You can only change the shape to one which
contains the same number of elements.

Also, note that reshape creates a new view of
the array data, and doesn’t change the shape of
the original array.

>>> a = np.arange(8)
>>> a.shape
(8,)
>>>
>>> a.reshape([2,4])
array([[0, 1, 2, 3],

[4, 5, 6, 7]])
>>> a.reshape([2,4]).shape
(2, 4)
>>>
>>> a.reshape([2,3])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: cannot reshape array of

size 8 into shape (2,3)
>>>

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 20 / 26

http://www.scinethpc.ca

Vector-vector & vector-scalar arithmetic

1-D arrays are often called ‘vectors’.

When vectors are added, subtracted, multiplied,
divided, etc. you get element-by-element
operations.

This is much faster than executing a python loop
or list comprehension.

When vectors are add, subtracted, multiplied,
divide, . . . , by a scalar, you also get element-wise
operations.

>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>>
>>> b = np.arange(4.) + 3
>>> b
array([3., 4., 5., 6.])
>>>
>>> c = 2
>>> c
2
>>>
>>> a * b
array([0., 4., 10., 18.])
>>> a * c
array([0, 2, 4, 6])
>>> b * c
array([6., 8., 10., 12.])

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 21 / 26

http://www.scinethpc.ca

Peculiar matrix-vector multiplication

A 2-D array is sometimes called a ‘matrix’.

Matrix-scalar multiplication gives element-wise
multiplication.

>>> a = np.array([[1,2,3],[2,3,4]])
>>> b = np.array([1, 2, 3])
>>> a * b
array([[1, 4, 9],

[2, 6, 12]])

Python matrix-vector multiplication:[
a11 a12 a13
a21 a22 a23

]
·

[
b1
b2
b3

]
=
[

a11 · b1 a12 · b2 a13 · b3
a21 · b1 a22 · b2 a23 · b3

]

Note: This is very different from matrix-vector multiplication in linear algebra!

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 22 / 26

http://www.scinethpc.ca

Vector broadcasting

This peculiar multiplication is result of element-wise operations plus broadcasting.

Python will perform vector broadcasting if you perform
a matrix-vector operation:

Python repeatedly applies the vector to the
matrix.
The length of the vector must equal the last
dimension of the matrix.

>>> a = np.array([[0],[10],[20],[30]])
>>>
>>> b = np.array([0,1,2])
>>>
>>> a + b
array([[0, 1, 2],

[10, 11, 12],
[20, 21, 22],
[30, 31, 32]])

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 23 / 26

http://www.scinethpc.ca

Summing array elements

Let’s create a 2x4 matrix:
>>> m = np.array([[0,1,2,3],[3,1,1,2]])
>>> print(m)
[[0 1 2 3]
[3 1 1 2]]

We can sum all the elements of an array with
.sum()

>>> print(m.sum())
13

But we can also just sum the columns with
axis=0:

>>> columnsums = m.sum(axis=0)
>>> print(columnsums)
[3 2 3 5]

Or the rows:
>>> rowsums = m.sum(axis=1)
>>> print(rowsums)
[6 7]

For integer arrays, we can count the occurances of
each value, with bincount e.g

>>> counts = np.bincount(m.flat)
>>> print(counts)
[1 3 2 2]
>>>
>>> columnsumcounts = np.bincount(columnsums)
>>> print(columnsumcounts)
[0 0 1 2 0 1]
>>>
>>>
>>> rowsumcounts = np.bincount(rowsums)
>>> print(rowsumcounts)
[0 0 0 0 0 0 1 1]

For floating point arrays, there’s np.histogram
to make histograms.

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 24 / 26

http://www.scinethpc.ca

4

Assignment 2

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 25 / 26

Assignment 2: Survey analysis with numpy and functions

Here’s a reference solution for assignment 1:
import sys
with open(sys.argv[1]) as f:

lines = f.readlines()
Parse lines, create a list of lists with the answers
submissions = []
for line in lines:

submissions.append(line.strip().split(","))
nquestions = min(len(s) for s in submissions)
nsubmissions = len(submissions)
Count yes's per question
for question in range(nquestions):

number_yes = 0
for submission in submissions:

if submission[question] == "Y":
number_yes += 1

percent = round(100*number_yes/len(submissions))
print("Question",question+1,"Y:",percent,"%")

Count #yes's in each submission, and make histogram
histogram = [0]*(nquestions+1)
for submission in submissions:

histogram[submission.count("Y")] += 1
for count in range(nquestions+1):

print("Questions with",count,"Ys:", histogram[count])

Split this into three functions:

One function should read the data and store it in
a 2-dimensional numpy array containing 0’s and
1’s (such that N becomes 0 and Y becomes 1).

A second function should take such a numpy array
as an argument and compute, for each of the
questions, the percentage of ‘N’ and ‘Y’ answers.

A third function should take such a numpy array
and print the number of surveys with zero ‘Y’
answers, then the number of surveys with one ‘Y’
answer, with two ‘Y’ answers, . . . , etc.

The script should then call these functions to
achieve the same result as before.

Use numpy functions where you can.
Try this out on the data file from assignment 1.
Use best practices.

Ramses van Zon BCH2203 Python - 4. More data analysis 31 January 2024 26 / 26

http://www.scinethpc.ca

	Working with Strings and Lists
	Working with Arrays
	Array arithmetic
	Assignment 2

